

CHAPTER-01
INTRODUCTION

Introduction: -
I. Data is Raw fact or an organized fact that need to be process.

II. Collection of an organized facts before processing refers to data.

Ex: - 1 +2 =3 =

INFORMATION
When data is processed organized to make it useful it is one information.

Data type
 Datatype define the definition of data.
 The data type are mainly categorize into 2 types
I. Built-in data type or Primary data type
II. Derive data type or user defined data type

Built-in data type
I. This is also known as primary datatype.

II. This type of data type are pre-defined and as a fixed set of rule for declaration.
III. Example of such data type :-

1. Integer datatype
2. Float datatype
3. Character datatype
4. Boolean data type

Derived data type
 This is also known as user define data type. This data type can be implemented

independently within a language.
 Example of such data type :-

I. Array
II. String

III. Structure
IV. Union etc.

DATA STRUCTURE
1) Data structure is a specialize way for organizing and storing data in memory .
2) So, that one can perform operation on it.
3) Data structure is

 How to represent data.
 What relationship data element s have among themselves.
 How to access those data elements.

Data process
Data

information

Linear data structure
i. The arrangements of data elements are in a sequential format .So one is connected

to one element .
ii. In this data structure one element is connected to another element in linear form.

Non-linear data structure
i. In this data structure one element is connected to ‘n’ number of elements .

Data structure operations :-
 The following 4 operations play a measure role in this text

(1) Traversing – Accessing each record exactly once so that certain items in the
record may be processed (these accessing & processing is sometimes called
visiting the records)

2) Searching – finding the location of the record with a given key value.
3) Inserting – Adding a new record to the structure.
4) Deleting – Removing a record from the structure.

 The following 2 operations which are used in special situation will also be consider .
1) Sorting- Arranging the records in some logical order it may be ascending or

descending
2) Merging- Combining the records in two different sorted files into a single

sorted file

Abstract data type
i. Abstract data type (ADT) is a mathematical model with collection of operations

define on that model .
ii. Model of a data type –

 Properties of data
 Operations that can be perform on that data.

Types of data structure

Primitive data structure Non-primitive data structure

Integer
Character
Float
Boolean

Linear data structure Non-linear data

Array
Stacks
Queue
Linked list
lllilist

Tree
Graph

Example of ADT :- Integer

Example
SET UNION (set A , set B)

ADT

DATA
properties

Operations

Integer ADT

Number
 Positive/Negative

Negetive
 Addition
 subtraction
 Multiplication
 Division

SET ADT

Group of elements

Union
Set deference
Intersection

Algorithm & It’s Complexity
Algorithm: -

 Algorithm is a step by step process to solve a problem of the computer
programming language.

 Using an algorithm we can write any programming language such as :- C, C++, Java
etc.

 The performance of an algorithm can be measure on the scales of time and space.
 If space complexity is more then time complexity will be more .If Space complexity

is less then time complexity will be less.
 It mainly depends upon the space complexity as compare to time complexity

Time complexity
 Time complexity of an algorithm signifies the total time required by the program to

run till its completion.
 The Time complexity of an algorithm is most commonly expressed using the “Big O

Notation” if an asympototic notation to represent the time complexity .

Types of notation for time complexity
I. Big O – It denotes “fewer than or same as”

II. Big 𝜔 – It denotes “more than or same as”
III. Big 𝜃 -It denotes “same as”
IV. Little o – It denotes “fewer than”
V. Little 𝜔 - It denotes “More than”

Space complexity
 The amount of space required to execute a program.

Algorithm Analysis :-
Best case complexity
 The best case complexity of an algorithm is the function define by the minimum

number of steps taken an any instance of size n.
 It represents the curb passing through the lowest point of each column.
 Big O (1)
 n =23

Average case complexity
 The average case complexity of an algorithm is the function define by the average

number of steps taken an any instance of size n.
 Big O (n/2)
 n=36

Worst case complexity
 The worst case complexity of an algorithm is the function defined by the maximum

number of steps taken an any instance of size n.
 Big O(n)
 n = 40

CHAPTER -2

STRING PROCESSING

STRING: -
 A group of numbers can be stored in an array, group of characters can also be stored

in an array. Such an array of character is called as string.
 OR
 String is combination of character, numeric with special character.

 Character

String

I. It is considering about 1 alphabet or
1 byte.

I. It is considering about more than 1
alphabet or 1 byte or more.

II. It is written in single quotation (‘ ’). II. It is written in double quotation (“ “).

III. Character is consisting himself. III. String is a collection of characters.

IV. In Array, character is defined with
single character but at no null
character will be obtained in the last
end . 5000

 Ex:- ‘A’ = A
 Index or address.

IV. In Array, string is consisting of character
and confined with null character at the end
state.
 200 201
Ex:- “A” = ‘A’ ‘0’

V. Every character can be a string. V. Every string cannot be a character.

Example:-

‘S’ ‘T’ ‘R’ ‘I’ ‘N’ ‘G’ ‘\O’
 0 1 2 3 4 5

 a[2]=30

 a[5]= $ array size

array name

 The number of characters in a string is called its length.

 Ex ->6

 The string with zero character is called "empty string” or "null string ".

Ex:-

CONCATENATION: -
 Let S₁, S₂ be string, the string consisting of character of S1 followed by character of S₂

is called Concatenation of S₁ and S2 .
 It is denoted by S1 // S2 .

Ex :-

 (i) “The”// ”end”

S1 = The

S2 = end

S1 // S2 = “The” // “end”= Theend.

(ii)”The”//” “//”End” = The End.

Sub-string :-

 A string 'y' is called as sub-string of a string of ‘S' if they are exist ‘X' and 'Z'.

 If 'X' is an empty string then 'y' is called an initial sub-string of 'S' and 'Z' is an empty
string then 'y' is called a terminal sub-string of ‘S’.

Storing strings :-
 Storing strings means how to store the string in different method like as:

1. Fixed length structure.
2. Variable length structures with fixed maximum.
3. Linked storage structures.

 ‘\0’

1. Fixed length structure: -
 In fixed length storage each line print is viewed as a record where all records have the

same length i.e; where each records accommodate the same number of character.

That is; data/character=length size

 Ex:- char a[6]

2. Variable length structures with fixed maximum: -
 The storage of variable length string is memory cells with fixed length that can be

done 1 can used marker such as 2-dollar signs (‘$’ ‘$’) and two signal at the
end of the strings.

Ex:-

 Char a[7]

3. Linked storage structure: -
 Computer are being used to frequently today forward processing i.e; for inputing

processing and outputing printed matter.
 For more extensive word processing, application string are stored by

means of linked list.

 Linked list:-Linked List is a linear collection of data elements called nodes in

which the linear representation is given by links from one node to next node.

Ex:- “ GPDKL”
 G P D k L

 Node 1 Node 2 Node 3 Node 4 Node 5

 End of Linked list

 Pointer

 (Address of the next node)

S T R I N G

data/character≠ length size
data/character<length size

R$ e s h m a$

 CHARACTER DATA TYPE :-
 Character data types are of two types:-
1. Character (char)
2. Character Varying (Varchar).

Character Character varying

 Character data can be stored as
fixed length.

 Character data can be stored as
variable length.

 Loss of memory is not obtaining by
char.

 Loss of memory is obtaining by
varchar.

 Character will take small size i.e; 0 to
255.

 Varchar will take size upto 0 to
65,535.

 In case of character it is not flexible. In case of varchar it is flexible .

 Ex :- Char a[5]
G P D K L

 Ex :- Char a[6]
C S E

 STRING OPERATION: -
1. Length ()

Syntax: - LENTH (STRING)
Ex- “COMPUTER APPLICATION”

LENTH(“COMPUTER APPLICATION”)
= 20

2. Sub String ()
Syntax:- SUBSTRING(STRING,INITIAL,LENGTH)
Ex:- SUBSTRING(“COMPUTER APPLICATION”,0,8)
=COMPUTER

3. Indexing ()
Syntax:- INDEX (STRING,PATTERN)
Ex:-INDEX(“HE IS WEARING GLASSES”,EAR)
 = 8

4. Concatenation ()
Syntax:-STRING 1 // STRING 2.
Ex:-“COMPUTER “//“APPLICATION”
= COMPUTERAPPLICATION.

5. Word Processing ()

Insert Delete

a) Insert ()
Syntax:-INSERT (STRING , POSITION , STRING).
Ex:-INSERT(“ABCDEIJKL”,5,FGH)
= ABCDEFGHIJKL

 b) Delete ()

Syntax:- DELETE(STRING,POSITION,LENGTH)
Ex-DELETE(“ABCDEFGH”,4,2)
=ABCDG

6. Replacement ()
 Syntax: -REPLACE (STRING, PATTERN1, PATTERN2)

Ex:-REPLACE(“ABCDIJKL”,D,N)
= ABCNIJKL

CHAPTER-3

ARRAY

Introduction about Array: -
Array is a collection of homogeneous data element of same datatype.

Syntax: Datatype array name [size]

 ex: int a[5]

10 20 30 40 50

LINEAR ARRAY :-
 A linear array is a finite number ‘n' of homogeneous data element. That is data elements

of the same type such that-
I. The elements of the array are referenced respectively by an index set consisting

of ‘n’ consecutive numbers.
II. The elements of the array are stored respectively in successive memory

locations.
III. ‘n' is the number of elements is called the length or size of the array.
IV. Index 'a' consists of the integer 0,1,2,3...n
V. Length = UB -LB +1

where,

 UB= Upper Bound

 LB= Lower Bound

REPRESENTATION TION OF LINEAR ARRAY IN MEMORY: -
 Memory of a computer is simply a sequence of Memory address location.
 Elements of a linear array as stored in Successive memory locations.
 The computer does not need keep track of the address of every element of array

but need to keep track of the only the address of the first element
called base address .

 In most programming languages the name of the array is associate with the starting
address of the memory location.

 LOC (LA [K] Base (LA) + W(K-LB)

Where, K is index

 LA = Linear Array.

W= size of Each Element.
LB = Lower bound.

(1) Int marks[]={99,67,78,56,88,90,34,85}
Calculate the address of marks [4] of the base address 1000 and W = 2 ?

LA[4] =1000(+2(4-0))
=1000+8
=1008

LA[1] =1000+2(1-0)
=1002

LA[2] =1000+2(2-0)
=10004

LA[3] =1000+2(3-0)
=1006

LA[4] =100+2(5-0)
=1010

LA[6] =1000+2(6-0)
=1012

LA[7] =1000+2(7-0)
1014

Traversing linear array: -

 Traversing an array means accessing each and every element of the array for a
specific purpose.

 Traversing data element of an array can include Printing Every element, Counting the
total number of elements or performing any process of those element.

 Since array is a linear data structure traversing it's element very simple
& strict forward.

 It is the process visiting Each element of the array exactly once that is starting from
1st element up to the last element.

 Let,
LA be a linear array stored in the memory of the computer we want to print each
element of linear array.

ALGORITHM:-
step 1 - Traversing a LA (LB.UB)

Step 2 -(Initialize Counter) set k=LB

step 3 - Repeat steps 4&5 while (K<=UB)

step 4 - Visit LA [K]

Step 5 - set K=K+1

Step 6 - Exit

 Write a programme to traverse an array:-

#include<stdio.h>

#include<conio.h>

void main()

{

int in ,n ,a [10];

Clrscr ();

printf ("\n enter the length of array");

scanf("%d", &n);

printf ("Enter the elements");

For (i=0; i<=n; i++)

{

scanf("%d\n", &a[c]);

}

printf (" traversing of the array");

for (i=0; i<=n-1; i++)

{

printf ("%d\n", a[i]);

}

getch ();

}

Inserting:-
 To insert the new element in the existing array following different position of the array
used.

 At the end the array.
 the beginning of the array.
 At given position.
 in the shorted array.

At the end of the array:-

Algorithm :-
step - 1 – If UB = max then array is overflow and stop.

step 2 =Read data

Step 3 =UB UB +1

Step 4 =A [UB] data

Step-5=stop

Program :-

#include <stdio.h>

#include <conio.h>

void main()

{

int i ,n ,a [10];

Clrscr();

printf ("\n enter the size of the array :");

scanf("%d", &n);

printf ("enter the elements:");

For (i=0; i<=n; i++)

{

scanf("%d", &a[i]);

}

for (i=0; i<=n-1;i++)

{

Printf ("over flow");

}

 getch();

}

OUTPUT:-
enter the size of the array:4

enter the elements:1,2,3,4,5

over flow over flow over flow over flow

At the beginning 0f the array:-

 Algorithm:-
Step- 1 -if UB = Max -then Write array is overflow & Stop

Step-2 - READ =DATA

 Step-3- K ←UB

Step-4- Repeat step

Step-5 -A[K+1]←A[K][5]while k ≥ LB K←K-1

 Step-6 -A[B]← DATA

 Step -7- STOP

Program :-
#include <stdio.h>

#include <conio.h>

void main()

{

int a [10],i, n;

Clrscr();

printf (" Enter the size of the array");

scanf("%d", &n);

If(n>=10)

{

printf (" over flow");

}

printf(“Enter the element of array”);

For (i=0; i<=n; i++)

scanf("%d", &a[i]);

for (i=n;i>0;i--)

a[i]=a[i-1];

printf (" Enter the new element");

scanf(“%d”,& a[0]);

printf ("after insert");

n++;

for (i=0;i<n;i++)

printf ("%d\t", a[i]);

getch();

}

OUTPUT:-
Enter the size of the array:3

Enter the elements:1,3,5

Enter the new element 6

Enter insert 6,1,3,5

At the given position :-

We want to insert an element in the middle of the array then half of the elements must be
moved downward to new locations to accomorded the new element and help the order of
the elements.

Algorithm:-
INSERT (LA, N, K, ITEM)
(LA is the linear array with N elements and K ≤ N insert item LA[K])
Step-1 :- j = N
Srep- 2:- Repeat step 3 & 4 while k <= j
Step- 3:- Move the elements downwards LA [j + 1] = LA [I]
Step- 4:- j = j-1 (end of step 2 loop)
Step- 5:- Set L[K] = item
Step- 6:- Set N = N+1
Step- 7:- Exit

Program: -

Sorted Array :-
Step- 1:- If UB= Max then write ‘ array ‘ is overflow and stop
Step- 2:- Read data as elements to be in sorted
Step- 3:- k ← LB
Step- 4:- Repeat step (5) while A(K) < data
Step- 5:- K ← K+1
Step- 6:- LOC ← K
 K ← UB
Step- 7:- Repeat step (8) while K ≥ LOC
Step- 8:- A (K+1) ← A(K)

 K ← K – 1
Step- 9:- A (LOC) ← data
Step- 10:- STOP

Deletion :-
→ Link inser on dele on is also possible at any posi on in the array such as from the end
,from the beginning if specific elements is given

→ Before dele ng the element first we have to check the under flow condition that is if N =
0 (N = UB-LB + 1), Array is underflow and stop

Algorithm:-
From the end

1. If N = 0 then write ‘UNDERFLOW’ and STOP
2. A(UB) ← NULL
3. UB ← UB-1
4. STOP

From the beginning
1. If N = 0 then write ‘UNDERFLOW’ and STOP
2. K ← LB
3. Repeat step(4) while K < UB
4. A(K) ← A(K+1)
 K ← K+1
5. A(UB) ← NULL

UB ← UB – 1
6. STOP

Deletion of given element’s:-

Algorithm:-
1) If N=0 then array is UNDERFLOW & STOP
2) READ DATA as element to be deleted.
3) READ LOC as location at where deletion will be made.
4) K←LB
5) Repeat step (6) while A (K)=DATA
6) K←K+1
7) Repeat step (8) while K<UB
8) A(K)←A(K+1)

K←K+1
9) A(UB)←NULL

 UB←UB-1

10) STOP

Multi dimensional array: -

 (2d array)

A [2] [3]={60, 40, 30, 50, 60, 25}

 = {60,40,30,50,60,25}

 Most programming languages allow 2D and 3D array that is array elements are
referenced by 2 and 3 subscriptes.

2-Dimensional array:-
 1 dimensional array are organized linearly in only one direction but at times we

need to store data in the form of brief and tables.
 Here the Concept of single dimensional array is extended to incorrupted 2D data

structure.
 A 2D array the specified using two subscripted denotes the row subscripted and

Column subscriptes.

Declaration :-
Datatype array name [raw size] [column size];

int marks [2] [3]

 M×N array Contains M×N data element and each element is accessed using 2
subscripted ‘I’ and ‘j' where i < =m, i<=n.

 2d array are called matrix in math and tables in business application the 2d array are
called matrix array.
Ex:-
A 2d array 2x3 can be represented as

 3 2 1
6 3 5

2×3

 a[1,1],a[1,2],a[1,3]

 a[2,1],a[2,2],a[2,3]

Representation of 2D array in memory :-
Let A be a 2D m×n array ,the array will be represented in memory by a block of m×n
sequential memory location array can be represented in memory in two ways.

I. Row measure order.
II. Column measure order.

Row measure order:-
The array is

 array[1.m,1. n]

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 − − − −n
1 − − − −n
1 − − − −n

.

.

.
1 − − − −n⎦

⎥
⎥
⎥
⎥
⎥
⎤

The first way is the row measure order & the second way is the column measure order.

 (0,0) (0,1) (0,2). (0,n-1)
1 2 3
4 5 6
7 8 9

 (Row measure order)

(0,0)(0,1)(0,2). (0,m-1)
1 2 3
4 5 6
7 8 9

 (Column measure order)

Memory store:-
Address [A(I , j)]=Basic address+w{n(i-1)+(j-1)}

When ‘n’=number of column

 W= number of

 I & j are subscripts of the array element

Ex:-

Consider a 20×5 2d array marks which has its base address 1000 and the size of an
element 2 . now compute the address of element make [18][4] assume that the element
are stored in row measure order.

=1000+2{5(18-1)+(4-1)}

=1000+2{88}

=1000+176

=1176

Column measure order:-
If the array element are stored in column measure order.

Address [A(I ,j)]=Basic address +w{m(j-1)+(i-1)}

=1000+2{20(4-1)+(18-1)}

=1000+2{60+17}

=1000+154

=1154

Sparse matrix:-
The sparse matrix is a matrix that has large number of element with a ‘0’ values as the
dominating elements.

Ex:-

2 0 0 0
0 0 0 0
0 0 1 0
0 2 0 0

Representation of matrix in memory :-

 The matrix consume a lot of memory then the matrix is sparse, the memory
allotted to the matrix is wasted.

 In such a case to save valuable storage space we restore to triplet representation
(i , j, value) to represented each non zero element of the sparse matrix.

Ex-

2 0 0 0
 0 0 0 0
 0 0 1 0
0 2 0 0

 Write a programme to print the element of 2D array.

#include <stdio.h>

#include <conio.h>

i j Value

1 1 2

3 3 1

4 2 2

i = raw

j = column

Value = non
zero elements

 void main()
2 4
3 19

{

Int a [2] [2]={(2,4), (3,19)}

For (i=0; i<2; i++)

{

printf ("\n");

}

For (j=0; j<2; j++)

printf ("%d\t", a[i] [j]);

}

getch();

}

 Write a programme to print the element of 2D array.

include<stdio.h>
include<conio.h>
void main()
{
int I , j .a[2],[3];
clrscr();
for(i=0;i<2; i++)
{
for(j=0;j<3;j++)
{
printf(“Enter value for disp[%d][%d]=”,i ,j);
scanf(“%d”, &a[i][j]);
}
}
printf(“2D array elements:\n”);
for(i=0;i<2;i++)
{
for(j=0;j<3;j++)
{
printf(“\t%d”,a[i][j]);
if(j==2)
{
printf(“\n”);
}
}
}

getch();
}
OUTPUT:-

Enter the value for disp[0][0]=2
Enter the value for disp[0][1]=52
Enter the value for disp[0][2]=12
Enter the value for disp[1][0]=41
Enter the value for disp[1][1]=23
Enter the value for disp[1][2]=11
Two dimensional array elements are:
2 52 12
41 23 11

CHAPTER-4

STACKS AND QUEUES

Stack:-
 A stack is a linear structures in which items may be added or removed only at one

end.
 Example of such a structure – A stack of folded towels etc.
 That an item may be added on removed only from the top of any of the stacks. This

means particular that the last item to be added to a stack is the first item to be
removed. Accordingly stacks are also called last-in-first-out (LIFO).

 A stack is a list of elements in which an element may be inserted or deleted only at
one end, called the top of the stack. This means in particular that elements are
removed from a stack in the reverse order stack that in which they were inserted
into the stack.

 Special terminology is used for two basic operations associated with stacks-
(a)”push”- Push is the term used to insert an element into a stack.
(b) “Pop”- Pop is the term used to delete an element into a stack.

Ex-Suppose the following 6 dements are pushed in-order to an empty stack.
 STACK: AAA, BBB, CCC, DDD, EEE, FFF.

LIFO

 That Insertions and deletions can occur only at the top of the stack.
 This means EEE cannot be deleted before FFF, DDD cannot be deleted before EEE

and FFF-are deleted and so on.

FFF

EEE

DDD

CCC

BBB

AAA

5
4
3
2
1
0

AAA BBB CCC DDD EEE FFF

(Diagrams of the stacks)

Array Representation of Stacks :-
 Stacks may be represented in the computer in various ways, usually by means of a one

way list or a linear array ·Unless otherwise started or implied each of our stacks will be
maintain by a linear array stack a pointer variable top, which contains the location of the
top element of the stack and a variable MAXSTK. which gives the maximum number of
elements that can be held by the stack.

 The condition TOP=0 or TOP= NULL will indicate that the stack is empty.
 Such an array representation of a stack, Since TOP=3, the stack has three elements,

XXX.YYY.ZZZ and Since MAXSTK=8, there is room for five more stems in the stack.

 TOP MAXSTK

 The operation of adding (pushing) an item in to a stack and the operation of removing
(poping) an item of a stack may be implemented respectively by the following
procedures called Push and Pop.

 In executing the procedure. Push one must first test whether there is room in the stack
for the new item, if not then we have the condition known as Overflow condition.

 In executing the procedures pop one must first test whether there is an element in the
stack to be deleted, if not then we have the condition known as Under flow condition.

 Algorithm:-

 Push Operations:-
 This procedure pushes an ITEM into stack.

Step 1- If TOP = MAXSTK then print Overflow and return.

Step 2- Set TOP=TOP+1

Step 3- Set STACK [TOP]=ITEM

Step 4-Return

1 2 3 4 5 6

TOP

XXX YYY ZZZ

1 2 3 4 5 6 7 8

PUSH (STACK, TOP, MAXSTK.ITEM)

 Pop Operation:-
 This procedure deletes the top element of stack and assigns to the variable item.

Step 1- If TOP=0 then print Underflow and return .

Step 2- Set ITEM = STACK [TOP]

Step 3 - Set TOP = TOP-1

Step 4 – Return

 Arithmetic Expression:-
 Let Q be an Arithmetic Expression involving constants and operations.
 This section gives an algorithm which finds the value of Q by using reverse polish

(Post fix) notation.
 The binary operations in Q may have different levels of precedence. Specifically we

assume the following three levels of precedence for the usual five binary operations.
 Precedence Operators:-

1) Highest: Exponentiation (↑)
2) Next highest: Multiplication(*) and division (/)
3) Lowest : Addition (+) and Subtraction (-)

EX:-

 Evaluate the following parentheses tree arithmetic expression.

2↑3+5*2↑2-12/6

=8+5*4-12/6

=8+20-2

=28-2

=26

Polish Notation:-
 For most common arithmatic operations, the operator symbol is placed between its

two operands.
 This is called Infix Notation.
 For example A + B , C – D , E*F , G/H
 By using either parenthesis or some operator precedence convention such as,

Ex:-
 (A + B) *C , A+(B*C)

 Accordingly, the order of the operators and operand in an arithmetic expression does
not uniquely determine the order in which the operations are to be performed.

 Polish notation in which the operator symbol is placed before its two operands.

Ex:-
 + AB, - AB ,*CD , /GH

 We translate, step-by-step, the following infix expression Into polish notation using
brackets [] to indicate a partial translation.

(A+B)*C =[+AB]*C=*+ABC
A+(B*C)=A+[*BC]=+A*BC
(A+B)/(C-D)=[+AB]/[-CD]=/+AB-CD

 Reverse polish notation refers to the analogous notation in which the operator symbol
is placed after its two operands.

Ex:-

 AB+, CD, EF*, GH /

 One never needs parenthesis to determine the order of the operations in any
arithmetic expression written in reverse polish notation.

 This notation is frequently called postfix (or suffix) notation.
 Whereas prefix notation is the term used for polish notation.

 Evaluation of a postfix Expression:-
 This algorithm finds the value of an arithmetic Expression P written in postfix

notation.

 Step 1- If Add a right parenthesis ")" at the end of P.

 Step-2- Scan P from left to right and repeat steps 3&4 for each element of P untill the
Sentinel ")" is encountered.

 Step-3 -If an operand is encountered, put it on STACK.

 Step-4 - If an operator Ø is encountered, then

a) Remove the two top elements of STACK, when A is the top element and B is
the next to top element.

b) Evaluate B ∅A
c) place the result of (b) then back on STACK.

 Step-5 - Set value equal to the top element on STACK.

 Step-6 – Exit

 Ex:-
 Consider the following arithmetic expression P
written in postfix notation.
P: 5,6,2,+,*,12,4,/,-
 =5,6,2,+,*,12,4,/,-)
 =37

 Trans forming Infix Expression into Postfix:-

Expression:-

Algorithm:-

Suppose Q is an arithmetic expression written in infix notation this algorithm finds the
equivalent postfix expression P.

Step 1-Push left parentheses "(" on to STACK and add right parenthesis ")" to the end of Q.

Step 2- Scan Q from left to right and repeat steps 3 to 6. Each element of Q until the STACK
is empty.

Step 3- If an operand is encountered, add it to P.

Step 4- If a left parentheses "(" is encountered, push it on to STACK.

Step 5-If an operator Ø is encountered then,

a) repeatedly pop from STACK and add it to P each operator which has
the same precedence or higher precedence than Ø

b) Add Ø to STACK.
Step 6- If a right parenthesis ")" is encountered

a) repeatedly pep from STACK and add it top each operator until a left parenthesis is
encountered.
b) Remove the left parenthesis "(".

Step 7-Exit

Symbol scanned STACK

5 5

6 5 6

2 5 6 2

+ 5 8

* 40

12 40 12

4 40 12 4

/ 40 3

- 37

)

Ex:-

 Consider the following arithmetic infix notation (Infix toto postfix)

Q: A+(B*C-(D/E↑F)*G)*H

Q: A+(B*C-(D/E↑F)*G)*H)

Q STACK P
 (
A (A
+ (+ A
((+(A
B (+(AB
* (+(* AB
C (+(* ABC
- (+(- ABC*
((+(-(ABC*
D (+(-(ABC*D
/ (+(-(/ ABC*D
E (+(-(/ ABC*DE
↑ (+(-(/↑ ABC*DE
F (+(-(/↑ ABC*DEF
) (+(- ABC*DEF↑/
* (+(-* ABC*DEF↑/
G (+(-* ABC*DEF↑/G
) (+ ABC*DEF↑/G*-
* (+* ABC*DEF↑/G*-
H (+* ABC*DEF↑/G*-H
) ABC*DEF↑/G*-H*+

 How to check this question is correct or not→

 This is the conversion of postfix notation to infix notation

ABC*DEF↑/G*-H*+

C
B
A

F

E

D

B*C

A

E↑F

D

B*C

A

B*C
A

G
D/E↑F

B*C
A

D/E↑F
B*C

A

B*C-D/E↑F*G
A

D/E↑F*G
B*C

A

B*C-D/E↑F*G*H

A

H

B*C-D/E↑F*G

A

A+B*C-D/E↑F*G*H

Application of Stack:-

1)Expression Evaluation:-
 Stack is used to evaluate prefix, postfix and infix expressions.

2)Expression Conversion:-
 Stack is used to convert infix to postfix, infix to prefix form

3)Parentheses Checking:-
 Stack is used to check the proper opening and closing of parenthesis.

4)Page Visited History in a Web Browser

5) Undo sequence in a text editor.

6) Evaluation of arithmetic expression.

7) Recursion:-
 A function which calls itself is called Recursion.

I. Factorial function:-
 The product of the positive integers from one to end inclusive is called n factorial and is

usually denoted by n!
n! = 1, 2, 3,(n-2) (n-1`)n
0! =1
1! =1
4! =4×3×2×1
4! =4×3!
 =4×3×2!
 =4×3×2×1!
 =4×3×2×1
 =24

a) If n=0 , then n!=1
b) If n>0 , then n!=n.(n-1)!

Ex:-
2!=2×(2-1)!
=2×1!

Algorithm:-
The following are two procedures that each calculate
n factorial.

Step 1- if N=0, then set FACT=1 and return.
Step 2-Set FACT=1
Step 3- Repeat for K = 1 to N
 Set FACT=K* FACT
Step 4- Return

Step-1- if N=0, then set Fact=1 and return
Step-2 -Call Factorial (Fact, N-1)
Step-3- Set Fact = N* Fact
Step-4 -Return
N=5 5!
Factorial (Fact, 4)
Factorial (Fact,3)
Factorial (fact,2)
Factorial (fact, 1)

Factorial n*fact
Factorial =5*24
 =120

5!=5×4×3×2×1=120

II. Fibonacci Sequence:-

 It is usually denoted by (F0, F1, F2 Fn) is as follows:- 0,1,1,2,3,5,8,13, 21, 34,55..

That is, Fo = 0 and F1 =1 and each succeeding term is the sum of two preceding terms.

 For example:-

 The next two terms of the sequence are 34+55=89 and 55+89 = 144

F2=F0+F1 F3=F1+F2 F4=F2+F3
 =0+1=1 =1+1=2 =1+2=3

Def" of Fibonacci Sequence:-

 a) if n=o or n=1, then Fn=n

 b) if n>1 ,then, Fn=fn-2 + Fn-1

1. Factorial (FACT,n)

 Factorial (FACT ,n)

Algorithm:-
 FIBONACCI (FIB, N)

Step-1 if N=0 or N=1, then set FIB=N and return.

Step-2 Call FIBONACCI (FIBA, N-2)

Step-3 Call FIBONACCI (FIBB, N-1)

Step-4 Set FIB=FIBA+FIBB

Step-5 Return

 Ex:-

 FIB6

 F6 =FIB4 + FIB5

FIB6=FIBA+FIBB

=3+5

=8

2 2

0 1 1 2

3 4

1 2 2 3

0 1 0 1 0 1 1 2

0 1

 Queues:-
 A queue is a linear list in which items may be added only at one end and items may

be removed only at the other end.
 A queue is a linear list of elements in which deletions can take place only at one

end called the front and insertions can the Rear.
 The terms front and Rear are used in describe in a Linear list only when it is

implemented as a queue.
 Queues are also called first-in-first-out (FIFO) lists, since the first element in a queue

will be the first element out of the queue. In other words the order in which
elements enter a queue is the order in which they live.
Ex:- (i)The People waiting in line at a bank from a queue where the first person in
line is the person to be waited on and so on.

 The diagram of a queue with 4 elements:-

 (A)

(B)

 (C)

(D)

 The diagram of a queue with 4 elements where (A) is the front element and (D) is the
rear element. The front and rear elements of the queue are also respectively the first
and the last elements of the list. Suppose an element is deleted from the queue. Then it
must be A.

 Figure B is now the front element.
 Next E is added to the queue and then F is added to the queue.
 Then they must be added at the rear of the queue as in figure C. F is now the rear

element.
 Now suppose another element is deleted from the queue, then it must be B.
 In a date structure E will be deleted before F because it has been placed in the queue

before F. However, E will have to wait until C and D are deleted.

A. B. C. D.

B C D

B C D E F

C D E F

Front=- 1
Rear=-1

A

Front=0
Rear=0

A B

Front=0

Rear=1

Front=0
Rear=3

Array Representation of Queues:-
 Queues may be represented in the computer in various ways ,usually by means at

way list or linear arrays.
 Each of our queues will be maintained by a linear array queue and two pointer

variables.
 Front containing the location of the front element of the queue and rear containing

location of the rear element of the queue.
 The condition front = NULL will indicate that the queue is empty.
 The array will be started in memory using an array queue with N elements. It also

indicates the way elements will be deleted from the queue and the way new
elements will be added to the queue.

 Whenever an element is deleted from the queue the value of front is increased by 1 .
This can be implemented by the assignment .
 FRONT = FRONT+1.

 Whenever an element is added to the queue the value of rear increased by 1. This
can be implemented by the assignment.
 REAR =REAR +1

0 1 2 3

0 1 2 3 4

0 1 2 3

Rear=Rear+1
=0+1
=1

0 1 2 3 4

A B C D

Ex(i)
A B C D

 0 1 2 3 4 5 6 7 N-1

 (ii)

 0 1 2 3 4 5 6 7 N-1

(iii)

 0 1 2 3 4 5 6 7 N-1

 (Array Representation of Queue)

 Operation on a Queue:-

1.Algorithm to insert an element in a Queue:-
Queue Insert (Queue, N, FRONT, REAR, ITEM)

Step 1- If REAR = N-1

 Write Overflow

 Go to step 4

 [End of If]

Step2- If FRONT=-1 and REAR=-1

Max Q =N
Range of index=0-N-1

 B C D

 B C D

Set FRONT = REAR=0

ELSE

SET REAR = REAR+ 1

 [END OF IF]

Step 3 - Set QUEUE [REAR = ITEM]

Step 4- EXIT

2.Algorithm to delete an element from a queue:-
Step 1 - If FRONT=-1

Write UNDERFLOW

ELSE

SET VAL = QUEVE [FRONT]

 SET FRONT= FRONT +1

[END OF IF]

Step 2-Exit

 Circular Queue:-
 As the name indicates a circular queue is not linear in structure but circular.

 In a circular queue the elements Q[0], Q [1]. N-1 is represent in a circular.
 A circular here is one in which the insertion of a new element is done at the very fast

location of the queue.
 After Inserting an element at last location queue Q[5] the next element will be

inserted are very first location that is Q[o]. Circular queue very first is one in which
the first element comes after the last element.

Q[0]

Q[1]

Q[2]
Q[3]

Q[4]

Q[5] Front

Rear

 INSERT AN ELEMENT IN A CIRCULAR QUEUE:-
Step-1 - IF FRONT=0 and REAR=N-1

 Write OVERFLOW

 Goto Step-4

 [END OF IF]

Step 2 -IF FRONT =-1 and REAR=-1

 SET FRONT= REAR=0

ELSE LF

 REAR=N-1 and FRONT ≠0

 SET REAR=0

ELSE

 SET REAR=REAR+1

 [END OF IF]

Step 3- SET QUEUE [REAR] = ITEM

Step 4- EXIT
4

 DELETE AN ELEMENT IN A CIRCULAR QUEUE :-
Step-1 IF FRONT=-1

 Write UNDERFLOW

 Goto Step-4

Step- 2 -SET VAL=QUEUE [FRONT]

Step-3 -IF FRONT=REAR

ELSE IF

 FRONT=N-1

 SET FRONT=0

ELSE

 SET FRONT=FRONT+1

 [END OF IF]

Step -4 - EXIT

 Priority Queues:-
 A priority queue is a collection of elements such that each element has been

assigned a priority and such that the order in which elements are
deleted and processed comes from following rules.

i. An element of higher priority is processed before any element of lower
priority .

ii. Two elements with the same priority are processed according to the order
in which they were added to the queue.

 One -way. List Representation of a Priority Queue:-
 Each node the list will contain three items of information: an information field

(INFO), a priority a number (PRN)and a link number.
 A node X precedes a node y in the list-
 When X has higher priority than Y. or
 When both have the same priority but X was added to the list before y. This

means that the order in the one way list corresponds to the order of the priority
queue.

START

Ex:

INFO PRN LINK
B 2 6

 7

D 4 4

E 4 9

A 1 1

C 2 3

 10

G 5 0

F 4 8

 11

 12

 0

 A 1 B 2 C 2 D 4 E 4 F 4 G 5 X

1

2

3

4

5

6

7

8

9

10

11

12

START

 Array Representation of a Priority Queue→

START

5

A 1 1 B 2 6 C 2 3 D 4 4 E 4 9 G 5 ø

 A 1 B 2 C 2 D 4 E 4 F 4 G 5 ø

FRONT REAR

3 3

1 2

0 0

5 1

4 4

1 2 3 4 5 6

A

C B

1

2

3

4

5

F

G

D E

 CHAPTER-5

LINKED LIST

*Introduction:-
 Linked List is a linear collection of data elements called Nodes in which the linear

representation is given by links from one node to next node.
 It is a data structure which in turn can be used to implement other data structure.
 It acts as a building block to implement data structure such as stack, and other

queue variation.
 It can provide as a train or sequence of nodes in which each contains one or more

data fields and a pointer to the next node.
 A Linked List in which every nodes contains two part –

I. Integer / Information part
II. Pointer to the next node

Start

 1st node" 2nd node 3rd node 4th node.

 Information part of first node

 A Null pointer is represented by {x} while programming we usually define Null.
 Hence a null pointer denotes the end of the list.
 Since in a linked list every nodes contains a pointer to another nodes which is of the

same type, it is also called a self referencial data type.

 (chain representation of pointer)

 Linked List contains a pointer variable start which contains the address of the first
node in the list.

 We can traverse the entire list using start which contains the address of the first
node. The next part of the first node in the term stores the address of its succeeding
node. Using this technique the individual nodes of the list with from a chain of
nodes.

X

Link pointer The nodes contains a
pointer to the next

 Representation of Linked List in memory :-
 Let LIST be a Linked List. Then LIST will be maintain in memory unless otherwise

specified or implied as follows-
I. First of all LIST required two linear array which is INFO and LINK such that

 INFO [K]
 LINK [K] contains respectively.

The information part and the next pointer field of a node linked list

II. List requires a variable name such as start which contains the location of the
beginning of

the list and a next pointer denoted by null which indicates the end of the list.
 INFO LINK

1

2

3 O 6

4 T 0

5

6 11

7 X 10

8

9 N 3

10 I 4

11 E 7

12

Start

 NULL

INFO LINK

Start 9

9

N 3 6 0 11 E 7 X 10 I 4 I X

 Traversing a Linked List:-
 In a linked list INFO is the Information part, LINK is the address of the next element.

We take PTR IS a pointer variable which points to the node that is currently
processed.

 Here START is a pointer which points to the first element of the LIST.
 Initially we assign the value of START to pointer so PTR also points to the first

element of the LIST.
 For processing the next element we assign the address of the next element to PTR.

PTR:= START (Initially)

PTR:= PTR → Link (for processing next element)

 Now PTR has the address of the next element we can traverse. Each element of
linked list through this untill PTR has null address so the linked list can be traversed
as-
While PTR:≠Null
PTR:=PTR→ LINK/
(LINK [PTR])

Algorithm:-
Let LIST be a linked list in memory. This Algorithm traverses LIST applying an operation
process to each element of LIST. The variable PTR points to the node currently being
processed

Step 1 - Set PTR: =START (initialises pointer PTR)

Step-2 -Repeat Steps 3 & 4 while P:≠ NULL

Step-3 -Apply Process to INFO (PTR)

Step-4 -Set PTR LINK := [PTR]

Step- 5 -Exit.

START

A B C X

101 103 105

 Searching into a Linked List :-
 Searching refers to search an element in linked list for searching the element we first

traverse the linked list and with traversing the we compare the INFO part of each
element with the given element.

 List is Unsorted:-

Algorithm:-

 LIST is a linked list in memory.
 This algorithm finds the location (LOC) of the node where ITEM first appears in LIST

or sets LOC=NULL

Step 1 –Set PTR :=START

Step 2 -Repeat Step 3 while PTR ≠NULL

Step 3 - If ITEM=INFO [PTR], then

 Set LOC:=PTR & Exit

Else

 Set PTR := LINK [PTR] (PTR now point to next node)

Step 4-Set LOC := NULL (Search is unsuccessfull)

Step 5-Exit

Ex:- INFO LINK

Start

 ITEM=27
Start LOC=null

 X
106

101

105

106
105
104
103
102
101

24
23

22

40

SEARCH (INFO, LINK, START, ITEM, LOC)

103

103

22 40 23 24 X

INFO LINK

 List is Sorted:-

Algorithm:-

 LIST is a sorted list in memory
 This algorithm finds the location (LOC) of the node where ITEM first appears in LIST or

sets

 LOC=NULL. Ex-> Start

Step-1 Set PTR := START

Step-2 Repeat Step 3 while PTR ≠ NULL

Step-3 If ITEM<INFO [PTR] then

 Set PTR := LINK [PTR]

 Else if

 ITEM:= INFO [PTR] then

 Set LOC=PTR and Exit (Search is successful)

 Else

 Set LOC=NULL and Exit (ITEM now exceeds INFO[PTR])

Step-4 Set LOC: = NULL

Step-5 Exit

 Garbage Collection:-
 Some memory space becomes re-usalable because a node is deleted from a list or an

entire list is deleted from a program we want the available for future rule.
 One way to bring this to immediately the space Into the free storage list.
 The Operating System of a computer may periodically collect all the deleted space

or unused space on to the free storage list.

Avail

(Unused memory cells)

 The technique which does this collection is called Garbage Collection.
 Garbage collection usually takes place in two steps:

I. Tag memory cells which are currently in use.
II. Untagged space is collected onto the free storage list.

x

SEARCH (INFO, LINK, START, ITEM, LOC)

100

13 12 11 10

108 106 103 100

X

 Insention into a Linked List:-

Insertion Algorithms:-

 Algorithms which insert nodes into Linked List come up various situations. We discuss
two of here-

 The first one inserts a node at the beginning of the list, the second one inserts a node
after the node with a given location.

(i)Inserting at the beginning of a list

Algorithm-

Step-1 If AVAIL: NULL then Write Overflow and Exit.

Step-2 Set NEW:= AVAIL and AVAIL:=LINK [AVAIL].

 (Remove first node from AVAIL. List)

Step-3 Set INFO[NEW]:=ITEM (Copies new data into new node).

Step-4 Set LINK [NEW] := START (New node now points to original first node)

Step-5 Set START := NEW (Changes START so it points to to the new node)

Step-6 Exit.

(ii)Inserting After a given node-

 Suppose we are given the value of Loc where either LOC is the location of a node A is a
Linked List or LOC=NULL. The following is an algorithm which inserts ITEM into List so
that ITEM follows node A or when LOC=NULL so that ITEM is the first node.

 Let N denote the new o node (whose LOC is new)

If LOC= NULL then, N is inserted as the first node is List otherwise we l et node N point to
node B by the assignment..

 LINK [NEW] = LINK [LOC].

and we let node A point to the new node N by the assignment.

 LINK [LOC]=NEW

INSFIRST (INFO, LINK, START, AVAIL, ITEM)

Algorithm-

 This Algorithm inserts ITEM so that ITEM follows the node with Location (LOC) or inserts
the ITEM as the first node when LOC = NULL

Step-1 AVAIL:=NULL

 Write Overflow or Exit

Step-2 Set NEW := AVAIL

 and AVAIL := LINK [AVAIL]

(Remove first node from AVAIL List)

Step-3 Set INFO [NEW] := ITEM (Coples new data into new node)

Step-4 If LOC=NULL, then (insert as first node)

 Set LINK [NEW]:= START and

 START : =NEW

 Else: [Insert after node with location (LOC)].

 Set LINK[NEW]:= LINK [LOC]

 And LINK [LOC]:=NEW

 (End of if structure)

Step-5 Exit

 Deletion from a Linked List:-

Algorithm-

This Algorithm deletes the node in with Location (LOC). LOCP is the location of the node
which precedes N or when N is the first node, LOCP=NULL.

INS LOC (INFO, LINK, START, AVAIL, LOC, ITEM)

DEL (INFO,LINK, START, AVAIL, LOC, LOCP)

Step-1- If LOCP := NULL then

 Set START:=LINK [START] (delete first node)

else

 Set LINK [LOC P]:=LINK [LOC] (deletes Node N)

Step-2-Set LINK[LOC]:= AVAIL and

 AVAIL:= LOC (Deleted node to the AVAIL List)

Step-3-Exit

 Header Linked List:-
 A header linked list is a linked list which always contains a special node called the

header node at the beginning of the list
 The following are two kinds of widely used header list-

I. Grounded Header List-> A grounded header list is a header list where the last
node contains the null pointer.

II. Circular Header List -> A circular header list is a header list where the last node
points back to the header node

Ex- Header node.

Start

 (grounded theadon list)

Start

 Header node.

 (circular header, lists)

 The list pointer start always points to the header node.
 Accordingly LINK [START] = NULL indicates that a grounded header list is empty and

LINK [START] = START indicates that a circular header list is empty.

 Double Linked List:-
 In single linked list one can move starting from the first node to any ride in one

direction only (left to right). So, single linked list also Known as one way list.
 Double linked list is two way list.
 In double linked list we can move either direction.
 In double linked list a node has atleast three field sау data, left link and right link.

x

x

 Two way direction

 (Backward & forward)

previous Next
pointer pointer
field field

 Information

x

Left

link
data

Right

link

 Difference between Single & double linked lists:-

Single Linked List Double Linked List
 It has nodes with data field and next

linked field. (forward linked list)
 It has nodes with data field and two

pointer field.
(Backward & Forward pointer field).

 It requires one list pointer variable ‘start’
start

 It requires two list pointer variable start
and last or first and last.

Start

o last

 In single linked list the traversal can be
done in one direction.

 In double linked list traversal can be
done in two directions.

 It occupies less memory It occupies more memory

 Less efficient access to the element More efficient access to the element.

x

A

B C

E F G

Chapter-6

TREE

 Basic Terminology of Tree :-
 Tree is a non-linear data structure which shows parents-child relationship among

the nodes.
 It organises data in hierarchical manner.

 Tree Terminology:-

 Node-> Each element of the tree is a node.

 Level-0 Root node (first node)

 Level-1 Internal nodes

 Edges

 Level-2 Siblings

 Subtrees.

 Leaf node (Last nodes having no child)

•Edges→ The lines which connects one node to another node is called Edge.

•Degree of node→ It is the number of child.

Ex- degree of B = E, F →2.

 degree of C = G →1.

 degree of G=O.

•Degree of tree→ It is the maximum number of nodes ore child.

 Ех- B & C→2.

•Height →Bottom to Top (Longest path).

Ex-

Height of A = 3

Height of C= F to C →1

Height of F = 0

 Parent Node & Child Node-

A → B & C
B → E & F

C → G

 Depth Level → Root node to node (similar as Level)
Ex-

•Siblings → E&F (Parrent same) when there is the

 B & C (Parent same) nodes having parent it is known as Siblings

•Predecessor → C node→A

 B node→ A

•Successor→ C node → G

 B node → E&F

Ex-

A
C

F E

B

D

G

A

C

F

B

E G H

Depth of E=2.

(E TO A)

Depth of B=1

(B to A)

A

D

J H

M L

G

C B

E F

Level 0

Level 1

Level 2

Level 3

Child Nodes Parent
nodes

}

1) Nodes - A, B, C, D, E, F, G, H, J, L,M.
2) Root Node - A
3) Leaf Node - E, F, L, M, J
4) Internal Node -B, C, D, E, F, G, H, J.
5) Degree of Node - A = 3 , B = 2 , c = 1 , D = 2 , G = 1, H = 1 ,

 L = 0 , M = 0
6) Degree of tree -B, C, D = 3
7) Height-
8) Parent Node & Child Node-

Parent nodes,

⎩
⎪
⎨

⎪
⎧

𝑨 → 𝑩, 𝑪, 𝑫
𝑩 → 𝑬, 𝑭(𝟐)
𝑪 → 𝑮 (𝟏)

𝑫 → 𝑯, 𝑱(𝟐)
𝑮 → 𝑳 (𝟏)

𝑯 → 𝑴. (𝟏) ⎭
⎪
⎬

⎪
⎫

no of child nodes

9) Levels -Level 0, Level 1, Level 2, Level 3.
10) Depth – 3
11) Predecessor-

12)Successor-

B→A

C→A

D→A

E→B

F→B

G→C

H→D

J→D

L→G

M=H

A→B,C,D

B→E, F

C→G

G→L

D→H, J

н→м.

12) Siblings-

13) Subtree-

Binary Tree:-
 Binary tree is a special tree data structure in which every node has at most 2 child.

Ex-

 There has 2 child or 0 or 1

A → B & C

B → E & F

D → H & F

A

D

J

L

H G

C B

E F

M

Subtrees

A

C B

A

C B

D E F

 A Binary Tree (T) is defined as finite set of elements called nodes.
(a) T is empty called the Null tree or Empty tree.
(b) T contains a distinguished node R, called the Root of T and the remaining

nodes of T form an ordered pair of disjoint binary trees T, & T₂
 If T does contain a Root R then the two trees T1& T2 are respectively, the

left and right sub-trees of R..
 If T₁ is non-empty then it's Root is called the left successor of R. Similarly

if T₂ is non-empty then its Root is called the right successor of R.

(a) B is a left left successor and C is a sight successor of the node A
(b) The left subtree of the node B,D,E,F and the right subtree of the Root A

consists of the node: C, G, H, J, K, L,
(c) Any node N in a binary tree. T has either 0, 1, or 2 successors. The

nodes A, B, C and H have 2 successors, the node E and j have only one
successor and the node D, F, G, L., K has no successor are called
Terminal node or leaf node.

 Representation of Binary Tree in Memory:-
 Binary Tree can be represented by two ways in memory

A

C B

H G E D

F J K

L

It is a
binary
tree

T2

Right Successor

T1

i. Linked Representation.
ii. Sequencial Representation.

1) Linked Representation :-
 In this representation a binary tree T is represented by linked list in memory
 T will be maintained in memory by means of a linked representation which

uses three parallel arrays, INFO, LEFT and RIGHT and a pointer variable ROOT
as follows-

(1) First of all each node N of T will correspond to a location K such that:
(a) INFO [K] contain the data at the node N.
(b) LEFT [K] contains the location of the left child of the node N.
(c) RIGHT [K] contains the locations of the right child of the node N

(2) ROOT will contain the location of ROOT R of T. If any subtree is empty then the
corresponding pointer will contain the Null value, if the tree T itself is empty then
ROOT will contain the Null value.

EX-

 Root

 INFO LEFT RIGHT

1 A 3 4

2

3 B 6 7

4 C 0 0

5

6 D 0 0

7 E 0 8

8 H 0 0

 A

 1

 B X C X

 4

 X D X X E

 7 X H X

 8

Root nodes A

C B

1

Avail

2) Sequencial Representation:-
 This representation uses only a single array Tree as follows:-

(a) The Root R of T is stored in Tree [1].
(b) If a node N occupies TREE [K], then it's left child is stored in TREE [2*K] and its right

child is stored in TREE [2*K+1].
(c) Again Null is used to indicate an empty subtree In particular TREE [1] = Null

indicates that the tree is empty.

Solve this using Link Representation:-

A

C B

E D

H

A

C

D E G

F

H

J

L

B

TREE [K]
TREE[1]element A
=NULL
The left child
will stored in
TREE [2*K]
=2*1
=2 (element B)
The right child will stored
TREE [2*K+1]
= [2*1+1]
= [241]
=3 ->(element C)
TREE [K]
TREE [2]

A

C B

F E

 ROOT

 A
 1
 B C
 3 4
 E X

X D X 9 X G X
7 11

 X F X H
 12 13

 J X X K X
 14 17
 X L X
 20

 INFO LEFT RIGHT
1 A 3 4
2
3 B 7 9
4 C 11 13
5
6
7 D 0 0
8
9 E 12 0

10
11 G 0 0
12 F 0 0
13 H 14 17
14 J 20 0
15
16
17 K 0 0
18
19
20 L 0 0

The right child will stored in->
TREE [2*K+1]
=[2*1+1]
=[241]
=3 ->(element c)
TREE [K]
TREE [2]
The left child will stored in

1 A
2 B
3 C
4 E
5 F
6
7
8

TREE [2K]
2*2
=4 ->(element E)
The right child stored in-
TREE [2K+1]
2*2+1
4+1
=5 ->(element F)

 1

Q.Solve this using Sequential Representation.

TREE [K]
TREE [1]-element A

The left child will stored in-
TREE [2*K]
=2*1
=2 element B

Right child-
TREE [2*K+1]
=2*1+1
=2+1
=3

Left child-
TREE [2 * K] 2*2=4 element D

Right Child-
TREE [2*K+1]
= [2*2+1]
=4+1
=5 element E
TREE [K]
TREE [5]

1 A
2 B
3 C
4 D
5 E
6 G
7 H
8
9

10 F
11
12
13
14 J
15 K
16
17
18
18
19
20
21
22

 23
 24
 25
 26
 27
 28 L

A

C

H

K J

L

C

E G

B

D

Element c

Left child
TREE [2*K]
=2*5
=10 F
TREE [K]
TREE [3] C
Left child
TREE [2*K]
=2*3
6 G

Right child-
TREE [2*K+1]
=2*3+1
=7 H
TREE [K]
TREE[7] H

Left child-
TREE [2*K]=2*7
 =14 j
Right child-
Tree[2*K+1]
=2*7+1
=15 →K
Tree[K]
Tree[14] →J

Left child-
Tree[2*K]
=2*14
=28 → L

 Binary Tree Traversal:-
 Traversing a tree means accessing every node once at a time. There are 3 ways of

traversing a binary free.
(a) Pre order → Root Left subtree Right subtree
(b) Inorder→ Left subtree Root Right subtree
(c) Post order→ Left subtrice Right subtree Root.

(1) Pre order:-
Algorithm-
Step-1→ Process the root R.
Step-2→ Traverse the Left subtree of R in preorder.
Step-3→ Traverse the right subtree
EX-

(2) In order:-
Algorithm:-
Step-1 →Traverse the left subtree of R in inorder.
Step-2 →Process the root R.
Step-3 →Traverse the right subtree of R in inorder.
EX-

A

C

F E

B

D

A

C

F E

B

D

Left Root right

DBEAFC

(3) Post order:
Algorithm:-
Step-1→ Traverse the left subtree of R in post order.
Step-2 → Traverse the right subtree of R in post order.
Step-3 → Process the root R.
EX:-

 One shortcut method:-
Scanning Method- (How to check the correct answer after solving by the Algorithm
steps)
PRE ORDER-1st time access node
INORDER- 2ND time access node
POST ORDER-3rd time access node

Result
PRE-FBADCEGIH
IN-ABCDEFGHI
POST-ACEDBHIGF

Same answer will obtain by
Algorithm rules

A

C

F E

B

D

Left Right Root

DEBFCA

R00 L R

L R00 R

L R R00

F

G

I

H E

D

B

A

C

Right
Subtree
node

Left
Subtree
node

 Binary Search Tree:-
 A Binary Search Tree is a binary tree in which

i) All nodes of left subtree are less than root node.
ii) All nodes of right subtree are greater than the root node.

EX-

•Searching->
 Suppose T is a Binary Search Tree. An ITEM of information is given the following

algorithm finds the location of ITEM in the Binary Tree T.
 Compare ITEM with the root node N of the tree-

i> If ITEM <N, proceed to the left child of N.
ii> If ITEM >N, proceed to the right child of N.

Ex:-
Suppose search ITEM= 7 then, we
will first see towards the root node
i.e. 10 so, 7<10, then if 74<0 then
according to the above condn ,we
will proceed to the left child then
there is. 6 which is the parent node
then 7>6 then if 7>6, according to
the above cond" we will shift to
right node then, 7 = 7). Then the
searching is stopped. Because we
were searching for the ITEM=7,
and we found that'

10

12

11 7

6

3 13

10

12

11 7

6

3 13

 Insertion of Binary Search Tree :-
 Always insert new node as leaf node.
 Start at root node as current node.
 if new node's key < current's key
(i) If current node has a left child search left
(ii) Else add new node as current's left child:
 if new node's Key > current's Key

(i) If current node has a right child, search right.
(ii) Else add new node as current's right child.

EX-
According to the above
rules, new node = 60
and the current nade
25 Then we insert at
the last or after the leaf
node.

 Deletion of Binary Search Tree :-
 Suppose T is a Binary Search tree

and suppose on ITEM of information is given.
 These section gives an algorithm which

deletes ITEM from the Tree T.

 The way N is deleted from the Tree depends primary on the no. of children node N.
 There are three cases-

 Case(i)-N has no children.
 Then N is deleted from T by simply replacing the Location of N in the parent node
P[N] by the Null painter.

Case (ii)- N has exactly one child.
 Then N is deleted from T by simply replacing the location of N in P[N] by the location of
the only child of N.

25

50

70

90

66

60
44

35

15

23

 24

31

 18
12

10

4
New
Node
(insert)

→ No chidren (leaf node)
→One child
→Two child

(Non-leaf node)/
(internal node)

Case (iii)- N has two children.
 Let S[N] denote the inorder successor of N. (The reader can verify that S[N] desnot have
a left child).
 Then N is deleted from T-by first deleting S[N] from T (by using Case (i) or Case (ii) and
then replacing node N in T by the node S[N].

Algorithm-
 Perform Search for value x
 If x is a leaf, delete x
 Else internal node has to be delete.
(a) Replace with largest value y on left subtree or smallest value z on right subtree.
(b) Delete replacement value (y and x) from subtree.

25

35

40

37 21

20

10

5

3 6
15

13

