

LEARNING MATERIAL

ON

SOFTWARE ENGINEERING

(FOR 3RD SEMESTER CSE)

PREPARED BY:

PRIYANKA MAHARANA

GOVT.POLYTECHNIC,DHENKANL

CHAPTER-1

SOFTWARE ENGINEERING

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures.

The outcome of software engineering is an efficient and reliable software product.

Definitions-IEEE defines software engineering as:

(1) The application of a systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software; that is, the application of

engineering to software.

(2) The study of approaches as in the above statement.

PROGRAM VBS SOFTWARE PRODUCT program

 They are usually small in size. They are lines of code or maybe 100 to 2000 lines

codes on little more.

 There is no documentation or lack in documentation.

Software Product:

 Very big in size. The lines of codes are in thousands To lacs maybe more, depends on

Software Product.

Proper documentation and well documented and user manual prepared. Large or vast

Emergence of Software Engineering

Software engineering techniques have evolved over many years which resulted series

of innovations and experience about writing good quality programs.

Early Computer Programming (1950s):

Programs were being written in assembly language.

Programs were limited to about a few hundreds of lines of assembly code.

High-Level Language Programming (Early 60s)

High-level languages such as FORTRAN, ALGOL, and COBOL were

introduced:

This reduced software development efforts greatly.

Control Flow-Based Design (late 60s)

 Programmers found it increasingly difficult not only to write cost effective and correct

programs, but also to understand and maintain programs written by others.

Data Structure-Oriented Design

 Software engineers were now expected to develop larger more complicated software

products which often required writing in excess of several tens of thousands of lines

of source code

Object-Oriented Design

 An object-Oriented design technique is an intuitively appealing approach, where the

natural objects occurring in a problem are first identified and then the relationships

the objects such as composition, reference, and inheritance are determined

SOFTWARE LIFE CYCLE MODELS

The Software Development Lifecycle is a systematic process for building software that

ensures the quality and correctness of the software built.

The software development life cycle (SDLC) is a framework defining tasks performed at

each step in the software development process.

Feasibility Study

A feasibility study is simply an assessment of the practicality of a proposed plan or

project. As the name implies, these studies ask: Is this project feasible or not .

The goals of feasibility studies are as follows:

1. To understand thoroughly all aspects of a project, concept, or plan

2. To become aware of any potential problems that could occur while implementing

the project

Requirement Analysis

During this phase, all the relevant information is collected from the customer to develop a

product as per their expectation. Any ambiguities must be resolved in this phase only.

Design

In this phase, the requirement gathered in the SRS document is used as an input and

software architecture that is used for implementing system development is derived.

Implementation or Coding

Implementation/Coding starts once the developer gets the Design document. The Software

design is translated into source code. All the components of the software are implemented

in this phase.

 Testing

Testing starts once the coding is complete and the modules are released for testing. In this

phase, the developed software is tested thoroughly and any defects found are assigned to

developers to get them fixed.

Deployment

Once the product is tested, it is deployed in the production environment or

firstUAT(UserAcceptancetesting)is done depending on the customer expectation.

CLASSICAL WATERFALL MODEL AND ITERATIVE WATERFALL MODEL

This model is called as linear sequential model. This model suggests a systematic

approach to software development.The project development is divided into sequence of

well-defined phases

https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/
https://www.softwaretestinghelp.com/what-is-user-acceptance-testing-uat/

Different phases of this model are: ·Feasibility study

·Requirements analysis and specification

·Design

·Coding and unit testing

·Integration and system testing

·Maintenance

Feasibility Study

The main of the feasibility study is to determine whether it would be financially,

technically and operationally feasible to develop the product. The feasibility study activity

involves the analysis of the problem and collection of all relevant information relating to

the product such as the different data items which would be input to the system.

•TechnicalFeasibility

Can the work for the project be done with current equipment, existing software

technology and available personnel?

• Economic Feasibility

Are there sufficient benefits in creating the system to make the costs acceptable?

• Operational Feasibility

Will the system be used if it is developed and implemented?

Requirement Analysis and Specifications

The goal of this phase is to understand the exact requirements of the customer regarding

the product to be developed and to document them properly.

This phase consists of two distinct activities:

Requirements gathering and analysis. Requirements

specification.

Requirements Gathering and Analysis

This activity consists of first gathering the requirements and then analyzing the gathered

requirements. The goal of the requirements gathering activity is to collect all relevant

information regarding the product to be developed from the customer with a view to

clearly understand the customer requirements.

Requirements Specification

The customer requirements identified during the requirement gathering and analysis

activity are organized into a software requirement specification (SRS) document. The

requirements describe the “what” of a system, not the “how”. This document written in a

natural language contains a description of

Design

The goal of this phase is to transform the requirements specified in the SRS document into

a structure that is suitable for implementation in some programming language. Two

distinctly different design approaches are being used at present. These are:

• Traditional design approach

• Object-oriented design approach

Traditional Design Approach

The traditional design technique is based on the data flow oriented design approach.

The design phase consists of two activities:

1. first a structured analysis of the requirements specification is carried out,

2. second structured design activity.

Object-Oriented Design Approach

In this technique various objects that occur in the problem domain and the solution

domain are identified and the different relationships that exist among these objects are

identified.

Coding and Unit Testing

The purpose of the coding and unit testing phase of software development is to translate

the software design into source code.

Integration and System Testing

During the integration and system testing phase the different modules are integrated in a

planned manner.System testing usually consists of three different kinds of testing

activities:

• α –testing: α testing is α testing is the system testing performed by thedevelopment

team.

• β –testing: This is the system testing performed by a friendly set of customers.

Maintenance

Software maintenance is a very broad activity that includes error correction, enhancement

of capabilities and optimization. Maintenance involvesperforming the following activities:

•Corrective Maintenance

This type of maintenance involves correcting error that were not discovered during the

product development phase.

•Perfective Maintenance

This type of maintenance involves improving the implementation of the system and

enhancing the functionalities of the system according to the customer’s requirements.

•Adaptive Maintenance

Adaptive maintenance is usually required for reporting the softer to work in a new

environment.

ITERATIVE WATERFALL MODEL

In a practical software development project, theclassicalwaterfallmodelis hard to use. So,

Iterative waterfall model can be thought of as incorporating the necessary changes to the

classical waterfall model to make it usable in practical software development projects.

The iterative waterfall model provides feedback paths from every phase to its

preceding phases, which is the main difference from the classical waterfall model.

When errors are detected at some later phase, these feedback paths allow correcting errors

committed by programmers during some phase.

Phase Containment of Errors: The principle of detecting errors as close to their points

of commitment as possible is known as Phase containment of errors.

Advantages of Iterative Waterfall Model

• Feedback Path: In the classical waterfall model, there are no feedback paths, so

there is no mechanism for error correction.

• Simple: Iterative waterfall model is very simple to understand and use. That’swhy it

is one of the most widely used software development models.

EVOLUTIONARY MODEL

Evolutionary model is a combination of Iterativeand Incremental modelof software

development life cycle. It is better for software products that have their feature sets

redefined during development because of user feedback and other factors. The

https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-incremental-process-model/
https://www.geeksforgeeks.org/software-engineering-incremental-process-model/

Evolutionary development model divides the development cycle into smaller, incremental

waterfall models in which users are able to get access to the product at the end of each

cycle.

Application of Evolutionary Model:

1. It is used in large projects where you can easily find modules for incremental

implementation. Evolutionary model is commonly used when the customer wants to

start using the core features instead of waiting for the full software.

Advantages:

• In evolutionary model, a user gets a chance to experiment partially developed

system.

• It reduces the error because the core modules get tested thoroughly.

PROTOTYPING MODEL

Prototyping is an attractive idea for complicated and large systems for which there is no

manual process or existing system to help to determine the requirements. The main

principle of prototyping model is that the project is built quickly to demonstrate the

customer who can give more inputs and feedback. This model will be chosen

• When the customer defines a set of general objectives for software but does not

provide detailed input, processing or output requirements.

• Developer is unsure about the efficiency of an algorithm or the new technology is

applied.

Spiral Model

1. Spiral Model is one of the oldest form of theSoftware Development LifeCycle

Models(SDLC), which was first defined by theBarry Boehmin the year 1986.

http://www.professionalqa.com/software-development-life-cycle
http://www.professionalqa.com/software-development-life-cycle
http://www.professionalqa.com/software-development-life-cycle
http://www.professionalqa.com/software-development-life-cycle
http://www.professionalqa.com/software-development-life-cycle
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/Barry_Boehm

2. Basically, this model is an evolutionary type model, which works on the combined

approach of thewaterfallanditerativemodel.

Phases of Spiral Model:

1. Planning:

This phase, mainly consists of following activities:

• Gathering of requirements through consistent interaction with the client and

stakeholders.

• Feasibility study.

2. Risk Analysis:-

This is the crucial stage and needs to be carried out attentively, in order to identify all the

potential risks, associated with the software product.

Development &Test:-

It is an important phase of this model, where all the requirements, strategies and plans are

implemented and executed, so as to develop the software product. Further, the software

development process is subsequently followed by testing activities.

Evaluation:-

This phase involves the software product interaction with the customers, who assess them

and accordingly, provide their feedbacks, which helps in determining the requirements or

http://www.professionalqa.com/waterfall-model
http://www.professionalqa.com/waterfall-model
http://www.professionalqa.com/iterative-model
http://www.professionalqa.com/iterative-model
http://www.professionalqa.com/iterative-model
http://www.professionalqa.com/iterative-model
http://www.professionalqa.com/software-testing-life-cycle

features that needs to be added or removed from the software, in the next iteration, so as to

satisfy the customer's need.

Spiral Model Strengths

1. Provides early indication of risks, without much cost.

2. Critical high-risk functions are developed first.

Spiral Model Weaknesses

1. The model is complex.

2. Risk assessment expertise is required.

CHAPTER-2

SOFTWARE PROJECT MANAGEMENT

The main goal of software project management is to enable a group of software engineers

to work efficiently towards successful completion of the project.

The management of software development is dependent on four factors:

•The People • The Product • The Process • The Project

JOB RESPONSIBILITIES OF A SOFTWARE PROJECT MANAGER

• Software managers are responsible for planning and scheduling project development.

Manager must decide what objectives are to be achieved, what resources are required to

achieve the objectives, how and when the resources are to be acquired and how the goals

are to be achieved.

SKILLS NECESSARY FOR SOFTWARE PROJECT MANAGEMENT

• Good qualitative judgment and decision-making capabilities

• Good knowledge of latest software project management techniques such as cost

estimation, risk management, configuration management.

PROJECT PLANNING

Software managers are responsible for planning and scheduling project development.

They monitor progress to check that the development is on time and within budget.

Project planning consists of the following activities:

• Estimate the size of the project.

• Estimate the cost and duration of the project. Cost and duration estimation is

usually based on the size of the project. Estimate how much effort would be

required?

METRICS FOR PROJECT SIZE ESTIMATION

• It’s important to understand that project size estimation is the most fundamental

parameter. If this is estimated accurately then all other parameters like effort,

duration, cost, etc can be determined easily.

At present two techniques that are used to estimate project size are:

1. Lines of code or LOC

2. Function point

LINES OF CODE

Lines of code or LOC is the most popular and used metrics to estimate size. . LOC

measures the project size in terms of number of lines of statements or instructions written

in the source code. In this count, comments and headers are ignored.

Shortcomings of LOC

• LOC is language dependent. A line of assembler is not the same as a line of

COBOL.

• LOC measure correlates poorly with the quality and efficiency of the code.

FUNCTION POINT METRICS

• Function point metrics overcomes many of the shortcomings of LOC.Function point

metrics proposes that size of the software project is directly dependent on various

functionalities it supports. More the features supported the more would be the size.

• Function point metric estimates the size of a software product directly fromthe

problem specification.

The different parameters are:

• Number Of Inputs:

Each data item input by the user is counted.

• Number Of Outputs:

The outputs refers to reports printed, screen outputs, error messages produced etc.

• Number Of Inquiries:

It is the number of distinct interactive queries which can be made by the users.

• Number Of Files:

Each logical file is counted. A logical file means groups of logically related data. Thus

logical files can be data structures or physical files.

• Number Of Interfaces:

Here the interfaces which are used to exchange information with other systems

FP = UFP (Unadjusted Function Point) * TCF (Technical Complexity Factor) UFP =

(Number of inputs) * 4 + (Number of outputs) * 5 + (Number of inquiries) *4 +

(Number of files) * 10 + Number of interfaces) * 10 TCF = DI (Degree of Influence) *

0.01

The unadjusted function point count (UFP) reflects the specific countable functionality

provided to the user by the project or application.

Each of these 14 factors is assigned a value from 0 (not present or no influence) to 6

(strong influence). The resulting numbers are summed, yielding the total degree of

influence (DI). Now, the TCF is computed as (0.65+0.01*DI).

As DI can vary from 0 to 70, the TCF can vary from 0.65 to 1.35. Finally

FP = UFP *TCF

Feature Point Metric

Feature point metric incorporates an extra parameter in to algorithm complexity. This

parameter ensures that the computed size using the feature point metric reflects the fact

that the more the complexity of a function

PROJECT ESTIMATION TECHNIQUES

The estimation of various project parameters is a basic project planning activity. The

project parameters that are estimated include:

• Project size(i.e. size estimation)

• Project duration

There are three broad categories of estimation techniques:

• Empirical estimation techniques

• Heuristic techniques

• Analytical estimation techniques

•EMPIRICAL ESTIMATION TECHNIQUES

Empirical estimation techniques are based on making an educated guess of the project

parameters. While using this technique, prior experience with the development of similar

products is useful.

EXPERT JUDGMENT TECHNIQUE

The most widely used cost estimation technique is the expert judgment, which is an

inherently top-down estimation technique. In this approach makes an educated guess of

the problem size after analyzing the problem thoroughly. The expert estimates the cost of

the different modules or subsystems and then combines them to arrive at the overall

estimate.

DELPHI COST ESTIMATION

Delphi cost estimation approach tries to overcome some of the short comings of the expert

judgment approach. Delphi estimation is carried out by a team consisting of a group of

experts and a coordinator.

A coordinator provides each estimator with the software requirement specification (SRS)

document and a form for recording a cost estimate.

• The coordinator prepares and distributes a summary of the estimator’s responses

and includes any unusual rationales noted by the estimators.

HEURISTIC TECHNIQUES

Heuristic techniques assume that the relationships among the different project parameters

can be modelled using suitable mathematical expressions..

Different heuristic estimation models can be divided into two categories:

• Single variable model

• Multivariable model

A single variable estimation model takes the following form:

Estimated parameter = c1* ed1

Where e is a characteristics of the software, c1 and d1 are constants.

A multivariable cost estimation model takes the following form: Estimated

Resource = c1 * e1

d1 + c2 * e2 d2

+

Where e1, e2 .. are the basic characteristics of the software. c1, c2,

d1, d2 .. are constants.

COCOMO MODEL

COCOMO was proposed by Boehm. Boehm postulated that any software development

project can be classified into one of the following three categories based on the

development complexity:

ORGANIC,

SEMIDETACHED,

EMBEDDED.

• Organic: In the organic mode the project deals with developing a well- understood

application program. The size of the development team is reasonably small, and the

team members are experienced in developing similar types of projects.

• Semidetached: In the semidetached mode the development team consists of a

mixture of experienced and inexperienced staff

• Embedded: In the embedded mode of software development, the project has tight

constraints, which might be related to the target processor and its interface with the

associated hardware. According to Boehm, software cost estimation should be done

through three

stages: basic COCOMO, intermediate COCOMO, and complete COCOMO.

Basic COCOMO

The basic COCOMO model gives an approximate estimate of the project parameters. The

basic COCOMO estimation model is given by the following expressions:

Effort = a1 × (KLOC)a2 PM

Tdev = b1 × (Effort) b2 Months Where

(i) KLOC is the estimated size of the software product expressed in KiloLines of Code,

(ii) a1, a2, b1, b2 are constants for each category of software products,

Estimation of development effort:

For the three classes of software products, the formulas for estimating the effort based on

the code size are shown below:

Organic: Effort = 2.4(KLOC)1.05 PM Semi-Detached: Effort = 3.0(KLOC)1.12 PM

Embedded: Effort = 3.6(KLOC)1.20 PM PM: Person Months

Estimation of development time:

For the three classes of software products, the formulas for estimating the development

time based on the effort are given below:

Organic: Tdev = 2.5(Effort)0.38 Months Semi-detached: Tdev = 2.5(Effort)0.35 Months

Embedded: Tdev = 2.5(Effort)0.32 Months

Solution: The basic COCOMO equation takes the form:

Effort=a1*(KLOC) a2 PM

Tdev=b1*(efforts)b2 Months

Estimated Size of project= 400 KLOC

(i)Organic Mode

E = 2.4 * (400)1.05 = 1295.31 PM

D = 2.5 * (1295.31)0.38=38.07 PM

(ii)Semidetached Mode

E = 3.0 * (400)1.12=2462.79 PM

D = 2.5 * (2462.79)0.35=38.45 PM

(iii)Embedded Mode

E = 3.6 * (400)1.20 = 4772.81 PM

D = 2.5 * (4772.8)0.32 = 38 PM

Intermediate COCOMO

The basic COCOMO model allowed for a quick and rough estimate, but it resulted in a

lack of accuracy. Basic model provides single-variable (software size) static estimation

based on the type of the software. A host of the other project parameters besides the

product size affect the effort required to develop the product as well as the development

time .

The cost drivers are grouped into four categories:

• Product attributes

• Computer attributes

• Personnel attributes

• Development environment

Product

The characteristics of the product data considered include the inherent complexity of the

product, reliability requirements of the product, database size etc.

Computer

The characteristics of the computer that are considered include the execution speed

required, storage space required etc.

Personnel

The attributes of development personnel that are considered include the experience level

of personnel, programming capability, analysis capability etc.

Development Environment

The development environment attributes capture the development facilities available to

the developers.

Complete COCOMO / Detailed COCOMO

Basic and intermediate COCOMO model considers a software product as a single

homogeneous entity. Most large system are made up of several smaller subsystem. These

subsystems may have widely different characteristics.

Some subsystem may be considered organic type, some embedded and someemidetached.

Software development is executed in different phases and hence the estimation of efforts

and schedule of deliveries should be carried out phase wise.

ANALYTICAL ESTIMATION TECHNIQUES

Analytical estimation techniques derive the required results starting with certain basic

assumptions regarding the project. This technique does have a scientific basis.

Halstead’s Software Science an Analytical Estimation Techniques

Halstead’s software science is an analytical technique to measure size, development effort,

and development cost of software products. Halstead used a few primitive program

parameters to develop the expressions for the overall program length, potential minimum

volume, language level,

Operators and Operands for the ANSI C Language

The following is a suggested list of operators for the ANSI C language:

({ . , -> * + - ~ ! ++ -- * / % + - <<>><><= >= != == & ^ | && \\ = *=

/= %= -= <<= >>= &= ^= \= : ? { ; CASE DEFAULT IF ELSE

SWITCH WHILE DO FOR GOTO CONTINUE BREAK RETURN

and a function name in a function call.

Length and Vocabulary

The length of a program as defined by Halstead, quantifies the total usage of all

operations and operands in the program. Thus, length N = N1 + N2

The program vocabulary is the number of unique operators and operands used in the

program. Thus, program vocabulary η = η1 + η2

Program Volume

The length of a program depends on the choice of the operators and operands used.

V = N log2 η

The program volume V is the minimum number of bits needed to encode the program. In

fact, to represent η different identifiers uniquely, we need at least log2 η bits. We need N

log2 η bits to store a program of length N.

Effort and Time

The effort required to develop a program can be obtained by dividing the program

volume by the level of the programming language used to develop the code. Thus, effort

E = V / L, where E is the number of mental discriminations required to implement the

program and also the effort required to read and understand the program.

Actual Length Estimation

Even though the length of a program can be found by calculation the total number of

operators and operands in a program.

N=η1 log2 η1 + η2 log2 η2

Project Scheduling

Project-task scheduling is a significant project planning activity. It comprises deciding

which functions would be taken up.

Identify all the functions required to complete the project.

1. Break down large functions into small activities.

2. Determine the dependency among various activities.

3. Establish the most likely size for the time duration required to complete the

activities.

Work Breakdown Structure

Most project control techniques are based on breaking down the goal of the project into

several intermediate goals. Each intermediate goal can be broken down further. This

process can be repeated until each goal is small enough to be well understood. Work

breakdown structure (WBS) is used to decompose a given task set recursively into small

activities. In this technique, one builds a tree whose root is labeled by the problem name.

Activity Networks and Critical Path Method

Work Breakdown Structure representation of a project is transformed into an activity

network by representing the activities identified in work breakdown structure along with

their interdependencies. An activity network shows the different activities making up a

project, their estimated durations and interdependencies.

Critical Path Method

From the activity network representation, the followinganalysis can be made:

• The minimum time (MT) to complete the project is the maximum of all paths from

start to finish.

• The earliest start (ES) time of a task is the maximum of all paths from the start to

this task.

• The latest start (LS) time is the difference between MT and the maximum of all

paths from this task to the finish.

A path from the node to the finish node containing only critical tasks is called a critical

path.

GANTT CHART

A Gantt chart, commonly used in project management, is one of the most popular and

useful ways of showing activities (tasks or events) displayed against time. On the left of

the chart is a list of the activities and along the top is a suitable time scaleWhat the various

activities are

• When each activity begins and ends

• How long each activity is scheduled to last

Organization structure:

Usually, each software package development organization handles many projects at any

time. oftware package organizations assign totally different groups of engineers to

handle different software projects.

There are basically 2 broad ways in which a software package development organization

is structured: Project format, and Functional format. These are explained as following

below.

1. Project format:

The project development workers

are divided supported the project

that they work . In the project

format, a group of engineers is

appointed to the project at the

beginning of the

2. Functional format:

In the functional format, totally

different groups of programmers

perform different phases of a

project. For example, one team

may do the necessities

specification, another do the

planning, and so on.

Team Structure

project. This needs sensible quality

documentation to be made when each

activity.

Chief Programmer Team In this

organization, a senior engineer

provides the technical leadership

and is designated as the chief

programmer. The chief

programmer partitions the task

into small activities and assigns

them to the team members.

The chief programmer team is

probably the most efficient way of

completing and small projects

Democratic Team

The democratic team structure does

not enforce any formal team

hierarchy.

Typically a manager provides the

administrative leadership. At different

Mixed Control Team Organization

The mixed team organization draws upon the ideas from both the democratic

organization and the chief programmer organization. This team

organization incorporates both hierarchical reporting and democratic

set-up. The mixed control team organization is suitable for large team sizes

CHARACTERISTICS OF A GOOD SOFTWARE ENGINEER

The attributes that smart package engineers ought to posses are as follows:

• Exposure to systematic techniques, i.e., familiarity with package engineering

principles.

• Smart technical data of the project areas (Domain knowledge).

• Smart programming talents.

• Smart communication skills. These skills comprise of oral, written, and

interpersonal skills.

Importance of Risk Identification, Risk Assessment and Risk containment with

reference to Risk Management

Risk management is an emerging area that aims to address the problem of

identifying and managing the risk associated with a software project. It is really good to

identify it,

Risk management consist of three essential activities:

·Risk identification

·Risk assessment

·Risk containment

Risk Identification

A project can get affected by a large variety of risks. Risk identification identifies all the

different risks for a particular project. In order to identify the important risks which might

affect a project.

•Project Risks

Project risks concern various forms of budgetary, schedule, personal, resource and

customer- related problems. Software is intangible, it is very difficult to monitor and

control a software project.

•Technical Risks

Technical risk concern potential design, implementation, interfacing, testing, and

maintenance problem. Technical risks also include incomplete specification, changing

specification, technical uncertainly.

•Business risks

Business risks include risks of building an excellent product that no one wants, losing

budgetary or personal commitments etc.

Risks Assessment

The goal of risks assessment is to rank the risks so that risk management can focus

attention and resources on the more risks items. For risks assessment,each risk should be

rated in two ways:

Risk Containment

After all the identified risk of a project is assessed, plans must be made to contain the most

damaging and the most likely risks. Three main strategies used for risks containment are:

• Avoid the risk

• Risk reduction

• Transfer the risk

Avoid the Risk

This may take several forms such as discussions with the customer to reduce the scope of

the work and giving incentives to engineers to avoid the risk of manpower turnover etc.

Transfer the Risk

This strategy involves getting the risky component develops by a third party or buying

insurance cover etc.

Risk Reduction

This involves planning ways to contain the damage due to a risk.

Risk leverage = (risk exposure before reduction – risk exposure after reduction) / (Cost of

reduction)

SOFTWARE CONFIGURATION MANAGEMEnt

Configuration Management helps organizations to systematically manage, organize, and

control the changes in the documents, codes, and other entities during the Software

Development Life Cycle. It is abbreviated as the SCM process

The primary reasons for Implementing Software Configuration Management System are:

•There are multiple people working on software which is continually updating

• It may be a case where multiple version, branches, authors are involved in a

software project, and the team is geographically distributed and works concurrently

• Changes in user requirement, policy, budget, schedule need to be accommodated.

Baseline:

A baseline is a formally accepted version of a software configuration item. It is designated

and fixed at a specific time while conducting the SCM process. It can only be changed

through formal change control procedures.

Activities during this process:

• Facilitate construction of various versions of an application

• Defining and determining mechanisms for managing various versions of these work

products

Change Control:

Change control is a procedural method which ensures quality and consistency when

changes are made in the configuration object. In this step, the change request is submitted

to software configuration manager.

Activities during this process:

• Control ad-hoc change to build stable software development environment. Changes

are committed to the repository

• The request will be checked based on the technical merit, possible side effects and

Configuration Status Accounting:

Configuration status accounting tracks each release during the SCM process. This stage

involves tracking what each version has and the changes that lead to this version.

Activities during this process:

• Keeps a record of all the changes made to the previous baseline to reach a new

baseline

• Identify all items to define the software configuration

CHAPTER-3

REQUIREMENTS ANALYSIS AND SPECIFICATION

The requirements analysis and specification phase starts once the feasibility study phase is

completed and the project is found to be financially sound and technically feasible. The

goal of the requirement analysis and specification phase is to clearly understand the

customer requirements and to systematically organize these requirements in a specification

document. This phase consists of two activities:

• Requirements gathering and analysis.

• Requirements specification

REQUIREMENTS GATHERING AND ANALYSIS

The analyst starts requirements gathering and analysis activity by collecting all

information from the customer which could be used to develop the requirements of the

system.

Two main activities involved in the requirements gathering and analysis phase are:

• Requirements Gathering: The activity involves interviewing the end users and

customers and studying the existing documents to collect all possible information

regarding the System.

data output by the system?

• What are the likely complexities that might arise while solving the problem?

After the analyst has understood the exact customer requirements, he proceeds to identify

and resolve the various requirements problems

anomalies,

• inconsistencies, •incompleteness.

Anomaly: An anomaly is an ambiguity in the requirement. When a requirement is

anomalous, several interpretations of the requirement are possible.

Inconsistency: Two requirements are said to be inconsistent, if one of the requirements

contradicts the other two-end user of the system give inconsistent description of the

requirement

Incompleteness: An incomplete set of requirements is one in which some requirements

have been overlooked

SOFTWARE REQUIREMENT SPECIFICATION

After the analyst has collected all the required information regarding the software to be

developed and has removed all incompleteness, inconsistencies and anomalies from the

specification, analyst starts to systematically organize the requirements in the form of an

SRS document.

Some of the important categories of users of the SRS document and their needs are as

follows.

Users, customers and marketing personnel

The goal of this set of audience is to ensure that the system as describe in

the SRS document

 The software developers refer to the will meet their needs.

SRS document to make sure that they develop exactly what is required by the

customer.

 Test Engineers: Their goal is to ensure that the requirements are

understandable from a functionality point of view, so that they can test the

software and validate its working.

 User Documentation Writers: Their goal in reading the SRS document is to

ensure that they understand the document well enough to be able to write the users’

manuals.

Project Managers

They want to ensure that they can estimate the cost of the project

easily by referring to be SRS document and that it contains all

information required to plan the project.

Maintenance Engineers

The SRS document helps the maintenance engineers to understand the

functionalities of the system.

CONTENTS OF THE SRS DOCUMENT

An SRS document should clearly document:

Functional Requirements Non functional Requirements Goals of

implementation

Functional Requirement

The functional requirements of the system as documented in the SRS document should

clearly describe each function which the system would support along with the

corresponding input and output data set.

NONFUNCTIONAL REQUIREMENTS:-

Non-functional requirements deal with the characteristics of the system which cannot be

expressed as functions - such as the maintainability of the system, portability of the

system, usability of the system, etc.

GOALS OF IMPLEMENTATION:-

The goals of implementation part documents some general suggestionsregarding

development. These suggestions guide trade-off among design goals.The goals of

implementation section might document issues such as revisions tothe system

functionalities that may be required in the future, new devices to besupported in the future,

reusability issues, etc.

DOCUMENTING FUNCTIONAL REQUIREMENTS

For documenting the functional requirements, we need to specify the set offunctionalities

supported by the system. A function can be specified by identifyingthe state at which the

data is to be input to the system, its input data domain, theoutput data domain, and the type

of processing to be carried on the input data toobtain the output data

PROPERTIES OF A GOOD SRS DOCUMENT

The important properties of a good SRS document are the following:

CONCISE.The SRS document should be concise and at the same timeunambiguous,

consistent, and complete. Verbose and irrelevantdescriptions reduce readability and also

increase error possibilities.

STRUCTURED.It should be well-structured. A well-structured document iseasy to

understand and modify. In practice, the SRS documentundergoes several revisions to cope

up with the customerrequirements. Often, the customer requirements evolve over a

periodof time. Therefore, in order to make the modifications to the SRSdocument easy, it

is important to make the document well-structured.

BLACK-BOX VIEW. It should only specify what the system should do andrefrain from

stating how to do these. This means that the SRSdocument should specify the external

behaviour of the system and notdiscuss the implementation issues. For this reason, the

SRSdocument is also called the black-box specification of a system.

CONCEPTUAL INTEGRITY. It should show conceptual integrity so that thereader can

easily understand it.

RESPONSE TO UNDESIRED EVENTS. It should characterize acceptableresponses to

undesired events. These are called system response toexceptional conditions.

VERIFIABLE.All requirements of the system as documented in the SRSdocument

should be verifiable. This means that it should be possible todetermine whether or not

requirements have been met in animplementation.

ORGANIZATION OF THE SRS DOCUMENT

Organization of the SRS document and the issues depends on the type of the product being

developed. Three basic issues of SRS documents are: functional requirements, non

functional requirements, and guidelines for system implementations. The SRS document

should be organized into:

1. Introduction

(a) Background

(b)Overall Description

(c)Environmental Characteristics

Goals of implementation

Functional requirements

Non-functional Requirements

Behavioural Description

(a)System States

(b)Events and Actions

The `introduction’ section describes the context in which the system is being developed,

identify the purpose of your product.

an overall description of the system an overview of the product you build before listing

specifications.

The environmental characteristics.

The environmental characteristics subsection describes the properties of the environment

with which the system will interact.

Goals of implementation

The goals of implementation section might document issues such as revisions to the

system functionalities that may be required in the future, new devices to be

supported in the future, reusability issues,

Functional requirements-Functional requirements outline the system's behaviour or

WHAT it should do under different circumstances and in various use scenarios.

Nonfunctional Requirements

 • Reliability Maintainability Portability

Behavioral Description

Specification of behaviour may or may not be necessary for all system.it is

usually necessary for those system in which the system behaviour depends on

the state in which the system is and the system transit among a set of states

depending on some prespecified condition and event.

TECHNIQUES FOR REPRESENTING COMPLEX LOGIC:-

Good SRS documents sometimes may have the conditions which are complex &

which may have overlapping interactions & processing sequences. There are two main

techniques available to analyze& represent complex processes logic are

 A)Decision tree

B)Decision table

DECISION TREE

A decision tree gives a graphic view of the processing logic involved in decision making

and the corresponding actions taken. The edges of a decision tree represent conditions and

the leaf nodes represent the actions to be performed depending on the outcome of testing

the condition.

Example: - Consider Library Membership Automation Software (LMS) where it should

support the following three options:

• New member • Renewal • Cancel membership New member option

Decision: When the 'new member' option is selected, the software asks details about the

member like the member's name, address, phone number etc.

Action: If proper information is entered then a membership record for the member is

created and a bill is printed for the annual membership charge plus the security deposit

payable.

Renewal option

Decision: If the 'renewal' option is chosen, the LMS asks for the member's name and his

membership number to check whether he is a valid member or not.

Cancel membership option

Decision: If the 'cancel membership' option is selected, then the software asks for

member's name and his membership number.

CHAPTER-4

SOFTWARE DESIGN

Software design and its activities Software design deals with transforming the customer

requirements, as described in the SRS document, into a form (a set of documents) that is

suitable for implementation in a programming language.Design activities can be broadly

classified into two important parts:

• Preliminary (or high-level) design and

• Detailed design.

Preliminary and detailed design activities

The meaning and scope of two design activities (i.e. high-level and detailed design) tend

to vary considerably from one methodology to another.

High-level design means identification of different modules and the control relationships

among them and the definition of the interfaces among these modules. The outcome of

high-level design is called the program structure or software architecture. Many different

types of notations have been used to represent a high- level design.

During detailed design, the data structure and the algorithms of the different modules are

designed. The outcome of the detailed design stage is usually known as the module-

specification document.

Items developed during the software design phase For a design to be easily implemented

in a conventional programming language

CHARACTERISTICS OF A GOOD SOFTWARE DESIGN

The definition of “a good software design” can vary depending on the application being

designed. For example, the memory size used by a program may be an important issue to

characterize a good solution for embedded software development – since embedded

applications are often required to be implemented using memory of limited size due to

cost, space, or power consumption considerations. For embedded applications, one may

sacrifice design comprehensibility to achieve code compactness.

The characteristics are listed below:

• Correctness: A good design should correctly implement all the functionalities identified

in the SRS document.

• Understandability: A good design is easily understandable.

• Efficiency: It should be efficient. •Maintainability: It should be easily amenable to

change.

Features of a design documentIn order to facilitate understandability, the design should

have the following features: • It should use consistent and meaningful names for various

design components.

• The design should be modular. The term modularity means that it should use a cleanly

decomposed set of modules.

Modularity

A modular design achieves effective decomposition of a problem. It is a basic

characteristic of any good design solution. Decomposition of a problem into modules

facilitates the design by taking advantage of the divide and conquers principle

 Clean Decomposition

The modules in a software design should display high cohesion and low coupling. The

modules are more or less independent of each other.

Layered Design

In a layered design, the modules are arranged in a hierarchy of layers. A module can only

invoke functions of the modules in the layer immediately below it. A layer design

can make the design solution easily understandable.

COHESION

Most researchers and engineers agree that a good software design implies clean

decomposition of the problem into modules, and the neat arrangement of these modules in

a hierarchy. The primary characteristics of neat module decomposition are high cohesion

and low coupling. Cohesion is a measure of functional strength of a module

Error isolation Functional independence reduces error propagation. If a module is

functionally independent, its degree of interaction with other modules is less.

Therefore, any error existing in a module would not directly affect the other

modules.

Scope for Reuse- Reuse of a module becomes possible, because each module does

some welldefined and precise functions and the interface of the module with other

module is simple and minimal.

Understandability Complexity of the design is reduced, because different modules

are more or less independence of each other and can be understood in isolation.

Low High CLASSIFICATION OF COHESION

COINCIDENTAL COHESION: A module is said to have coincidental cohesion, if it

performs a set of tasks that relate to each other very loosely, if at all. In this case, the

module contains a random collection of functions. It is likely that the functions have been

put in the module out of pure coincidence without any thought or design.

LOGICAL COHESION:A module is said to be logically cohesive, if all elements of the

module perform similar operations, e.g. error handling, data input, data output, etc

TEMPORAL COHESION:When a module contains functions that are related by the fact

that all the functions must be executed in the same time span, the module is said to exhibit

temporal cohesion

PROCEDURAL COHESION:A module is said to possess procedural cohesion, if the set

of functions of the module are all part of a procedure (algorithm) in which certain

sequence of steps have to be carried out for achieving an objective.

COMMUNICATIONAL COHESION: A module is said to have communicational

cohesion, if all functions of the module refer to or update the same data structure,

,

FUNCTIONAL COHESION:Functional cohesion is said to exist, if different elements of

a module cooperate to achieve a single function. For example, a module containing

all the functions required to manage employees’ pay-roll exhibits functional

CLASSIFICATION OF COUPLING

Data coupling:Two modules are data coupled, if they communicate through a parameter.

An example is an elementary data item passed as a parameter between two modules.

Stamp coupling: Two modules are stamp coupled, if they communicate using a composite

data item such as a record in PASCAL or a structure in C. Control coupling: Control

couplingexists between two modules, if data from one module is used to direct the order

of instructions execution in another

Common coupling:Two modules are common coupled, if they share data through some

global data items.

Content coupling: Content coupling exists between two modules, if they share code, e.g.

a branch from one module into another module.

S/W Design ApproachesTwo different approaches to software design are: Function-

oriented design and

Object-oriented design

Function oriented design Features of the function-oriented design approach are: Top-

down decomposition In top-down decomposition, starting at a high-level view of the

system, each high-level function is successfully refined into more detailed functions.

 This function may consists of the following subfunctions: •assign-membership-number

• create-member-record

• print-bill Each of these sub functions may be split into more detailed sub functions and

so on.

Object Oriented Design :

In the object-oriented design approach, the system is viewed as a collection of objects.

The system state is decentralized among the objects and each object manages its own state

information.

STRUCTURED ANALYSIS METHODOLOGY

The aim of structured analysis activity is to transform a textual problem description into a

graphic model. Structured analysis is used to carry out the top-down decomposition of the

set of high-level functions depicted in the problem description and to represent them

graphically. Top-down decomposition approach

• Divide and conquer principle. Each function is decomposed independently

•Graphical representation of the analysis results using Data Flow Diagram (DFD).

USE OF DATA FLOW DIAGRAM

The DFD also known as bubble chart is a simple graphical formalism that can be used to

represent a system in terms of the input data to the system, various processing carried out

on these data & the output data generated by the system. DFD is a very simple formalism

– it is simple to understand and use.

LISTS THE SYMBOLS USED IN DFD

Five different types of primitive symbols used for constructing DFDs. The

meaning of each symbol is

Functional symbol () : A function is represented is using a circle.

External entity symbo) : An external entities are essentially those physl (ical entities

external to the software system which interact with the system by inputting data to the

system or by consuming the data produced by the system.

Data flow symbol () : A directed arc or an arrow is used as a data flow symbol.

Data store symbol () : A data store represents a logical file. It is represented using two

parallel lines.

Output symbol () : The output symbol is used when a hard copy is produced and the

user of the copies cannot be clearly specified or there are several users of the output.

CONSTRUCTION OF DFD

A DFD model of a system graphically represent how each input data is transformed to

its corresponding output data through a hierarchy of DFDs. A DFD start with the most

abstract definition of the system (lowest level) and at each higher level DFD

CONTEXT DIAGRAM

The context diagram represents the entire system as a single bubble. The bubble

is labelled according to the main function of the system. The various external entities

with which the system interacts and the data flows occurring between the system and

the external entities are also represented.

LEVEL 1 DFD

The level 1 DFD usually contains between 3 and 7 bubbles. To develop the Level 1

DFD, examine the high-level functional requirements. If there are between 3 to 7 high-

level functional requirements, then these can be directly represented as bubbles in the

Level 1 DFD

DECOMPOSITION

STRUCTURED DESIGN

The aim of structured design is to transform the results of the structured analysis (i.e. a

DFD representation) into a structure chart. Structured design provides two strategies to

guide transformation of a DFD into a structure chart.

• Transform analysis

• Transaction analysis

STRUCTURE CHART :

A structure chart represents the software architecture, i.e. the various modules making up

the system, the dependency (which module calls which other modules), and the

parameters that are passed among the different modules. The basic building blocks which

are used to design structure charts are the following:

• Rectangular boxes: Represents a module.

• Module invocation arrows: Control is passed from one module to another module in

the direction of the connecting arrow.

• Data flow arrows: Arrows are annotated with data name; named data passes from one

module to another module in the direction of the arrow.

TRANSFORM ANALYSIS

Transform analysis identifies the primary functional components (modules) and the high

level inputs and outputs for these components. The first step in transform analysis is to

divide the DFD into 3 types of parts:

• Input

• Logical processing

• Output

The input portion in the DFD includes processes that transform input data fr om physical

to logical form. Each input portion is called an afferent branch. The output portion of a

DFD transforms output data from logical form to physical form. Each output portion is

called an efferent branch.

Transaction Analysis

A transaction allows the user to perform some meaningful piece of work. In a

transaction-driven system, one of several possible paths through the DFD is

traversed depending upon the input data item. Each different way in which input data is

handled in a transaction. The number of bubbles on which the input data to the DFD are

incident defines the number of transactions.

CHAPTER-5

USER INTERFACE DESIGN

Characteristics of a user interface It is very important to identify the characteristics desired

of a good user interface. Because unless we are aware of these, it is very much difficult to

design a good user interface. A few important characteristics of a good user interface are

the following:

•Speed of learning. A good user interface should be easy to learn. Speed of learning is

hampered by complex syntax and semantics of the command issue procedures. A good

user interface should not require its users to memorize commands. Neither should the user

be asked to remember information from one screen to another while performing various

tasks using the interface. Besides, the following three issues are crucial to enhance the

speed of learning:

ƒ Use of Metaphors and intuitive command names.

Speed of learning an interface is greatly facilitated if these are based on some day-

to-day real-life examples or some physical objects with which the users are familiar. The

abstractions of real-life objects or concepts used in user interface design are called

metaphors. If the user interface of a text editor uses concepts similar to the tools used by a

writer for text editing such as cutting lines and paragraphs and pasting it at other places,

users can immediately relate to it. Another popular metaphor is a shopping cart.

. ƒ Consistency. Once a user learns about a command, he should be able to use the

similar commands in different circumstances for carrying out similar actions. This makes

it easier to learn the interfacesince the user can extend his knowledge about one part of the

interface to the other parts

ƒ Component-based interface. Users can learn an interface faster if the interaction

style of the interface is very similar to the interface of other applications with which the

user is already familiar. This can be achieved if the interfaces of different applications are

developed using some standard user interface components. This, in fact, is the theme of

the component-based user interface

• Attractiveness. A good user interface should be attractive to use. An attractive user

interface catches user attention and fancy. In this respect, graphics- based user interfaces

have a definite advantage over text-based interfaces.

• Consistency. The commands supported by a user interface should be consistent.

The basic purpose of consistency is to allow users to generalize the knowledge about

aspects of the interface from one part to another.

• Feedback. A good user interface must provide feedback to various user actions.

Especially, if any user request takes more than few seconds to process, the user should be

informed about the state of the processing of his request. In the absence of any response

from the computer for a long time, a novice user might even start recovery/shutdown

procedures in panic.

• Support for multiple skill levels. A good user interface should support multiple

levels of sophistication of command issue procedure for different categories of users. This

is necessary because users with different levels of experience in using an application

prefer different types of user interfaces. Experienced users are more concerned about the

efficiency of the command issue procedureAfter using an application for extended periods

of time,

• Speed of recall. Once users learn how to use an interface, the speed with which

they can recall the command issue procedure should be maximized. This characteristic is

very important for intermittent users. Speed of recall is improved if the interface is based

on some metaphors, symbolic command issue procedures, and intuitive command names.

• Error prevention. A good user interface should minimize the scope of committing errors

while initiating different commands. The error rate of an interface can be easily determined by

monitoring the errors committed by average users while using the interface. This monitoring

can be automated by instrumenting the user interface code with monitoring code he becomes

familiar with the operation of the software

• Error recovery (undo facility). While issuing commands, even the expert users can

commit errors. Therefore, a good user interface should allow a user to undo a mistake

committed by him while using the interface. Users are put to inconvenience, if they cannot

recover from the errors they commit while using the software.

• Mode-based interface vs. modeless interface - A mode is a state or collection of states in which

only a subset of all user interaction tasks can be performed. In a modeless interface, the same set

of commands can be invoked at any time during the running of the software. Thus, a modeless

interface has only a single mode and all the commands are available all the time during the

operation of the software

• A GUI usually supports command selection using an attractive and user- friendly

menu selection system. ƒ In a GUI, a pointing device such as a mouse or a light pen can be

used for issuing commands. The use of a pointing device increases the efficacy issue

procedure.

TYPES OF USER INTERFACE

User interfaces broadly classified into three categories:

Command language-based interfaces

Menu-based interfaces Direct

Direct manipulation interfaces

COMMAND LANGUAGE-BASED INTERFACES

A command language-based interface is based on designing a command language which

the user can use to issue the commands. The user is expected to frame the appropriate

commands in the language and type whenever required. Command language-based

interface allow fast interaction with the computer and simplify the input of complex

commands. Obviously, for inexperienced users, command language-based interfaces are

not suitable. A command language-based interface is easier to develop compared to a

menu-based or a direct-manipulation interface because complier writing techniques are

well developed

ISSUES IN DESIGNING A COMMAND LANGUAGE INTERFACE

The designer has to decide what mnemonics to use for the different commands. The

designer should try to develop meaningful mnemonics and yet be concise to minimize the

amount of typing required.

The designer has to decide whether the user will be allowed to redefine the command

names to suit their own preferences.

MENU-BASED INTERFACES

The advantage of a menu-based interface over a command language-based interface is

that menu-based interface does not require the users to remember the exact syntax of the

commands. A menu based interface is based on recognition of the command names. In this

type of interface the typing effort is minimal as most interactions are carried out through

menu selections using a pointing device.

SCROLLING MENUWhen a full choice list cannot be displayed within the menu area,

scrolling of the menu items is required. This enables the user to view and select the menu

items that cannot be accommodated on the screen.

{DIRECT MANIPULATION INTERFACES: Direct manipulation interfaces present

the interface to the user in the form of visual models i.e. icons. This type of interface is

called as iconic interface. In this type of interface, the user issues commands by

performing actions on the visual representations of the objects.

Main aspects of Graphical UI, Text based Interface Aspects of GUI In a GUI, multiple

windows with different information can simultaneously be displayed on the user screen.

Iconic information representation and symbolic information manipulation is possible in a

GUI. Symbolic information manipulation, such as dragging an icon representing a file to a

trash can for deleting, is intuitively very appealing and the user can instantly remember it.

WINDOW

A window is a rectangular area on the screen. A window can be considered to be a virtual

screen, in the sense that it provides an interface to the user for carrying out independent

activities, e.g. one window can be used for editing a program and another for drawing

pictures, etc. A window can be divided into two parts: client part, and non-client part.

WINDOW MANAGER AND WINDOW SYSTEM

Window manager is the component of WMS with which the end user interacts to do

various window-related operations such as window repositioning, window resizing,

iconification, etc. The window manager is built on the top of the window system in the

sense that it makes use of various services provided by the window system. The window

manager and not the window system determines how the windows look and behave. In

fact, several kinds of window managers can be developed based on the same window

system

WINDOW MANAGER

The window manager is responsible for managing and maintaining the non-client area of a

window. Window manager manages the real-estate policy, provides look and feel of each

individual window.

TYPES OF WIDGETS

(window objects) Different interface programming packages support different widget sets.

However, a surprising number of them contain similar kinds of widgets, so that one can

think of a generic widget set which is applicable to most interfaces. The following widgets

are representatives of this generic class.

LABEL WIDGET

This is probably one of the simplest widgets. A label widget does nothing except to

display a label, i.e. it does not have any other interaction capabilities and is not sensitive to

mouse clicks. A label widget is often used as a part of other widgets.

CONTAINER WIDGET

These widgets do not stand by themselves, but exist merely to contain other widgets.

Other widgets are created as children of the container widget. When the container widget

is moved or resized, its children widget also get moved or resized.

PULL-DOWN MENU

These are more permanent and general. You have to move the cursor to a specific

location and pull down this type of menu.

Dialog boxes. We often need to select multiple elements from a selection list. A dialog box

remains visible until explicitly dismissed by the user. A dialog box can include areas for

entering text as well as values

PUSH BUTTON

A push button contains key words or pictures that describe the action that is triggered

when you activate the button. Usually, action related to a push button occurs immediately

when you click a push button unless it contains an ellipsis (…). A push button with an

ellipsis generally indicates that another dialog box will appear.

RADIO BUTTONS

A set of radio buttons is used when only one option has to be selected out of many

options. A radio button is a hollow circle followed by text describing the option it stands

for. When a radio button is selected, it appears filled and the previously selected radio

button from the group is unselected. Only one radio button from a group can be selected at

any time.

COMBO BOXES

A combo box looks like a button until the user interacts with it. When the user presses or

clicks it, the combo box displays a menu of items to choose from. Normally a combo box

is used to display either one-of-many choices when space is limited, the number of choices

is large, or when the menu items are computed at run-time.

X-WINDOW

The X-window functions are low-level functions written in C language which can be

called from application programs. But only the very serious application designer would

program directly using the X-windows library routines. Built on top of X- windows

are higher-level functions collectively called Xtoolkit. Xtoolkit consists of a set of basic

widgets and a set of routines to manipulate these widgets.

POPULARITY OF X-WINDOW

One of the important reasons behind the extreme popularity of the X-window system is

probably due to the fact that it allows development of portable GUIs. Applications

developed using X-window system are device-independent. Also, applications developed

using the X-window system become network independent in the sense that the interface

would work just as well on a terminal connected anywhere on the same network as the

computer running the application is. Network-independent

ARCHITECTURE OF AN X-SYSTEM

The X-architecture is pictorially depicted in fig. 9.9. The different terms used in this

diagram are explained below.

The Xtoolkit consists of two parts: the intrinsics and the widgets. We have already seen

that widgets are predefined user interface components such as scroll bars, push buttons,

etc. for designing GUIs. Intrinsics are a set of about a dozen library routines that allow a

programmer to combine a set of widgets into a user interface. In order to develop a user

interface, the designer has to put together the set of components (widgets) he needs, and

then he needs to define the characteristics (called resources) and behavior of these widgets

by using the intrinsic routines to complete the development of the interface. Therefore,

developing an interface using Xtoolkit is much easier than developing the same interface

using only X library.

VISUAL PROGRAMMING

Visual programming is the drag and drop style of program development. In this style

 CHAPTER-6

 CODING AND TESTING

CODING

Good software development organizations normally require their programmers to adhere

to some well-defined and standard style of coding called coding standards. Most software

development organizations formulate their own coding standards that suit them most, and

require their engineers to follow these standards rigorously. A coding standard gives a

uniform appearance to the codes written by different engineers.

• It enhances code understanding.

• It encourages good programming practices.

CODING STANDARDS AND GUIDELINES

Good software development organizations usually develop their own coding standards and

guidelines depending on what best suits their organization and the type of products they

develop.

The following are some representative coding standards.

Rules for limiting the use of global: These rules list what types of data can be declared

global and what cannot.

Contents of the headers preceding codes for different modules: The information

contained in the headers of different modules should be standard for an organization. The

exact format in which the header information is organized in the header can also be

specified. The following are some standard header data:

• Name of the module.

• Date on which the module was created.

• Author’s name

. • Modification history.

• Synopsis of the module.

Naming conventions for global variables, local variables, and constant identifiers: A

possible naming convention can be that global variable names always start with a capital

letter, local variable names are made of small letters, and constant names are always

capital letters.

Error return conventions and exception handling mechanisms: The way error

conditions are reported by different functions in a program are handled should be standard

within an organization. For example, different functions while encountering an error

condition should either return a 0 or 1 consistently.

Do not use a coding style that is too clever or too difficult to understand: Code should

be easy to understand. Many inexperienced engineers actually take pride in writing cryptic

and incomprehensible code. Clever coding can obscure meaning of the code and hamper

understanding.

Avoid obscure side effects: The side effects of a function call include modification of

parameters passed by reference, modification of global variables, and I/O operations. An

obscure side effect is one that is not obvious from a casual examination of the code.

Obscure side effects make it difficult to understand a piece of code.

Do not use an identifier for multiple purposes: Programmers often use the same

identifier to denote several temporary entities. For example, some programmers use a

temporary loop variable for computing and a storing the final result. The rationale that is

usually given by these programmers for such multiple uses of variables is memory

efficiencyEach variable should be given a descriptive name indicating its purpose.

The code should be well-documented: As a rule of thumb, there must be at least one

comment line on the average for every three-source line. The length of any function

should not exceed 10 source lines: A function that is very lengthy is usually very difficult

to understand as it probably carries out many different functions. For the same reason,

lengthy functions are likely to have disproportionately larger number of bugs.

Do not use goto statements: Use of goto statements makes a program unstructured and

makes it very difficult to understand.

Aim of testing

The aim of the testing process is to identify all defects existing in a software product.

However for most practical systems, even after satisfactorily carrying out the testing

phase, it is not possible to guarantee that the software is error free. This is because of the

fact that the input data domain of most software products is very large. It is not practical to

test the software exhaustively with respect to each value that the input data may assume

Differentiate between verification and validation.

Verification is the process of determining whether the output of one phase of software

development conforms to that of its previous phase, whereas validation is the process of

determining whether a fully developed system conforms to its requirements specification.

CodeWalk-Through

The main objective of code walk-through is to discover the algorithmic and

logical errors in the code. Code walkthrough is an informal code analysis

technique.

In this technique, after a module has been coded, it is successfully compiled

and all syntax errors are eliminated. Some members of the development team

are given the code a few days before the walk- through meeting to read and

understand the code.

Some guidelines are:

●The team performing the code walkthrough should not be either too big or too

small. Ideally, it should consist of three to sevenmembers.

•Discussions should focus on discovery of errors and not on how to fix the

discoverederrors.

The principal aim of code inspection is to check for the presence of some common

types of errors caused due to oversight and improper programming. Some classical

programming errors which can be checked during code inspection are:

 Use of uninitializedvariables

 Jumps intoloops

 Non-terminatingloops

Software Documentation`

Different kinds of documents such as user's manual, software requirements

specification (SRS) document, design document, test document, installation manual

are part of the software engineering process. Good documents are very useful and

serve the following purposes:

➢ Good documents enhance understandability and maintainability of a software

product. They reduce the effort and time required for maintenance.

➢ Good documents help the users in effectively exploiting thesystem.

Different types of software documents can be broadly classified into:

oInternaldocumentationoExternaldocumentation

Internal Documentation

Internal documentation is the code comprehension features provided in the source code

itself. Internal documentation can be provided in the code in several forms. The

important types of internal documentation are:

Comments embedded in the sourcecode

Use of meaningful variablenames

Module and functionheaders

External documentation

External documentation is provided through various types of supporting documents

such as users' manual, software requirements specification document, design

document, test document etc

Distinguishamong Unit Testing, Integration Testing, and

SystemTesting

A software product is normally tested in the three levels:

• Unittesting

• Integrationtesting

• Systemtesting

A unit test is a test written by the programmer to verify that a relatively small piece of

code is doing what it is intended to do. They are narrow in scope, they should be easy

to write and execute, and their effectiveness depends on what the programmer

considers to be useful. The tests are intended for the use of the programmer. Unit tests

shouldn't have dependencies on outside systems.

UnitTesting

Unit testing or module testing of

Unit testing

different units or modules of a system in isolation.

 Fig:6.1 Unit testing

Unit testing is undertaken when a module has been coded and successfully reviewed.

The purpose of testing is to find and remove the errors in the software as practical.

The numbers of reasons in support of unit testing are:

 The size of a single module is small enough that we can locate an error

fairlyeasily.

 Confusing interactions of multiple error is widely different parts of the

software areeliminated.

Driver and Stub Modules

In order to test a single module, we need a complete environment to provide all that is

necessary for execution of the module. We will need the following in order to be able

to test the module:

o The procedures belonging to other modules that the module

under testcalls.

o Nonlocalb data structures that the moduleaccesses.

Stubs and drivers are design to provide the complete for a module.

 Global Data

Fig. 6.2 Unit testing with the help of driver and stub module

A stub procedure is a dummy procedure that has the same I/O parameters as given

procedure but has a highly simplified behaviour. A driver module would contain the

no local data structure accessed by the module under test, and would also have the

code to call the different function of the module with appropriate parameter values.

INTRODUCTION TO BLACK BOX TESTING

There are essentially 3 main approaches for designing test cases for unit testing.

1. black box approach,

2. white box approach

BLACK BOX TESTING

Driver Module

Module under

Stub Module

Black Box Testing is a software testing method in which the functionalities of software

applications are tested without having knowledge of internal code structure,

implementation details and internal paths. Black Box Testing mainly focuses on input

and output of software applications and it is entirely based on software requirements

and

specifications.

In the black-box testing, The following are the two main approaches to designing

black box test cases.

• Equivalence class portioning

• Boundary value analysis

EQUIVALENCE CLASS PARTITIONING

In this approach, the domain of input values to a program is partitioned into a set of

equivalence classes. This partitioning is done such that the behaviour of the program is

similar for every input data belonging to the same equivalence class. The main idea

behind defining the equivalence classes is that testing the code with any one value

belonging to an equivalence class is as good as testing the software with any other

value.

• Consider percentage field that will accept percentage only between 50 to 90 %,

more and even less than not be accepted, and application will redirect user to error

page.

• If percentage entered by user is less than 50 %or more than 90 %, that equivalence

partitioning method will show an invalid percentage.

BOUNDARY VALUE ANALYSIS

A type of programming error frequently occurs at the boundaries of different

equivalence classes of inputs. The reason behind such errors might purely be due to

psychological factors. Programmers often fail to see the special processing required by

the input values that lie at the boundary of the different equivalence classes.

Summary of the Black-box test suite Design

•Examine the input and output values of the program.

• Identify the equivalence classes.

• Pick the test cases corresponding to equivalence class testing and boundary value

analysis

WHITE –BOXTESTING

• White Box Testing is software testing technique in which internal structure, design

and coding of software are tested to verify flow of input- output and to improve

design, usability and security.

• In white box testing, code is visible to testers so it is also called Clear box testing,

Open box testing, Transparent box testing, Code-based testing and Glass box

testing.

• One white-box testing strategy is said to be stronger than another strategy, if all

types of errors detected by the first testing strategy

is also detected by the second testing strategy, and the second testing strategy

additionally detects some more types of errors. The concepts of stronger and

complementary testing are schematically illustrated in fig.

DIFFERENT WHITE BOX METHODOLOGIES:

1.STATEMENT COVERAGE

2. BRANCH COVERAGE,

3. CONDITION COVERAGE,

4. PATH COVERAGE,5.DATA FLOW BASED TESTING

6.AND MUTATION TESTING.

STATEMENT COVERAGE

This statement coverage strategy aims to design test cases so that every statement in a

program is executed at least once. The principle idea governing the statement

coverage strategy is that unless a statement is executed there is no way to determine

whether an error exist in that statement unless a statement is executed, we cannot

observe whether it causes failure due to some illegal memory access, wrong result

computationetc.

BRANCH COVERAGE

In the branch coverage-based testing strategy, test cases are

designed to make each branch condition assume true and false value in

turn. Brach testing is also known as edge testing, which is stronger than

statement coverage testingapproach.

CONDITION COVERAGE

In this structural testing, test cases are designed to make each component of a

composite conditional expression assumes both true and false values. For example, in

the conditional expression ((C1 AND C2) OR C3), the components C1,C2 andC3 are

each made to assume both true and false values

PATH COVERAGE

The path coverage-based testing strategy requires designing test cases such that all

linearly independent paths is the program are executed at least once. A linearly

independent path can be defined in the terms of the control flow graph (CFG) of

aprogram.

Control Flow Graph (CFG)

A control flow graph describes the sequence in which the different instructions of a

program get executed. In other words, a control flow graph describes how the control

flows through the program. In order to draw the control flow graph of a program, all

the statements of a program must be numbered first.

 PATHlinearly independent path.

PATH

A path through a program is a node and edge sequence from the starting node

to a terminal node of the control flow graph of a program.. A program can

have more than one terminal nodes when it contains multiple exit or return

type of statements.

MCCABE’S CYCLOMATIC COMPLEXITY METRIC

McCabe’s cyclomatic complexity defines an upper bound for the number of linearly

independent paths through a program. Also, the McCabe’s cyclomatic complexity is

very simple to compute. Thus, the McCabe’s cyclomatic complexity metric provides a

practical way of determining the maximum number of linearly independent

There are three different ways to compute the cyclomatic complexity. The answers

computed by the three methods are guaranteed to agree.

DATA FLOW – BASED

TESTING

The data flow – based testing method selects the test paths of a program

according to the location of the definitions and use of the different variables

in aprogram.

Consider a program P. For a statement numbered S of P, let

DEF (S) = {X | Statement S contains a definition of X},

and

USES (S) = {X| Statement S contains a use of X}

For the statement S: a = b+c ; DEF (S) ={ a}, USES(S) ={b,c}

MUTATION TESTING

In mutation testing, the software is first tested by using an initial

test suite built of from different white – box testing strategies. After the

initial testing is complete, mutation testing is taken up. The idea behind

mutation testing is to make a few arbitrary changes to a program at a time.

Each time the program is changed, it is called a mutated program and the

change effected is called a mutant. A mutated program is tested against the

full test suite of the program

DEBUGGING

Once errors are identified, it is necessary to first locate the precise program

statements responsible for the errors and then to fix them.

Buffer Force Method

This is the most common method of debugging, but is the least efficient

method. In this approach, the program is base with print statement to print

the intermediate values with the hope that some of the printed values will

help to identify the statement in error.

Backtracking

In this approach, beginning from the statement at which an error symptom is

observed, the source code is traced backwards until the error is discovered.

Cause Elimination Method

In this approach, a list of causes which could possibly have contributed to

the error symptom is developed and tests are conducted to eliminate each

cause.

Program Slicing

This technique is similar to back tracking. However, the search space is reduced by

defining slices.

Big – Bang Approach

In this approach, all the modules of the system are simply put together

and tested. This technique is practicable only for small systems. The main

problem with this approach is that once an error is found during the

integration testing.

Top – Down Approach

Top-down integration testing starts with the main routine and one or two

subordinate routines in the system. After the top-level

‘skeleton’ has been tested, the immediately subroutines of the ‘skeleton’

are combined with it and tested. Top-down integration testing approach

requires the use of program stubs to simulate the effect of lower-level

routines that are called by the routines under test

Bottom – up Integration Testing

In bottom-up

testing,

each subsystem

is tested

separately

and then the

full system is

tested. A

subsystem

might consist of

many modules which communicate among each other through well-

defined interfaces. The primary purpose of testing each subsystem is to

test the interfaces among various modules making up the subsystem. Both

control and data interfaces are tested.

Mixed Integration Testing

A mixed (also called sandwiched) integration testing follows a

combination of topdown and bottom-up testing approaches. In top-down

approach, testing can start only after the top-level modules have been

coded and unit tested. Similarly, bottom-up testing can start only after the

bottom level modules are ready.

Phased vs. incremental testing

The different integration testing strategies are either phased or incremental. A

comparison of these two strategies is as follows:

• In incremental integration testing, only one new module is added to the partial

system each time.

System Testing:

System tests are designed to validate a fully developed system to assure

that it meets its requirements. Three kinds of system testingare:

• Alphatesting

• Betatesting

• Acceptancetesting

Alpha Testing

Alpha testing refers to the system testing carried out by the team within the

developing organization.

Beta testing

Beta testing is the system testing performed by a select group of friendly customers.

Acceptance Testing

Acceptance testing is the system testing performed by the customer to

determine whether to accept or reject the delivery of the system.

 of thesystem.

Performance Testing

Performance testing is carried out to check whether the system meets thenon

–functional requirements identified in the SRS document. The types of

performance testing to be carried out on a system depend on the different

nonfunctional requirements of the system document in the SRS document.

All performance tests can be considered as black – boxtests.

• Stress testing

• Volume testing

• Configuration testing

• Compatibility testing

Stress Testing

Stress testing is also known as endurance testing. Stress testing evaluated system

performance when it is stressed for short periods of time. Stress tests are black –

box tests which are designed to impose a range of abnormal and even illegal input

conditions so as to stress the capabilities of the software. Input data volumes,

input data rate, processing time, utilization of memory are tested beyond the

designedcapacity.

Volume Testing

Volume testing, as the name suggests, is a testing done on high volumes of data. It

belongs to a group of non-functional testing that is performed as part of

performance-testing where a software product or application with high volume of

data is tested,

Configuration Testing

Configuration Testing is the type of Software Testing which verifies the

performance of the system under development against various combinations of

software and hardware to find out the best configuration under which the system

can work without any flaws or issues while matching its functional requirements.

Software

https://www.geeksforgeeks.org/software-testing-basics/

Here, software means different operating systems (Linux, Window, and

Mac) and also check the software compatibility on the various versions of

the operating systems like Win98, Window 7, Window 10, Vista, Window

XP, Window 8, UNIX, Ubuntu, and Mac.

Hardware

The application is compatible with different sizes such as RAM, hard disk,

processor, and the graphic card, etc.

Mobile

Check that the application is compatible with mobile platforms such as

iOS, Android, etc.

Network

Checking the compatibility of the software in the different network parameters such

as operating speed, bandwidth, and capacity.

Regression Testing

Regression Testing is the process of testing the modified parts of the code

and the parts that might get affected due to the modifications to ensure that

no new errors have been introduced in the software after the

modifications have been made

Recovery Testing

Recovery Testing is software testing technique which verifies software's ability to

recover from failures like software/hardware crashes, network failures etc. The

purpose of Recovery Testing is to determine whether software operations can be

continued after disaster or integrity loss. Recovery testing involves reverting back

Maintenance Testing

Most of the tests are conducted on software during its pre-release stage, but some

tests are done once the software has been released. One such procedural testing is

known as Maintenance Testing.

Documentation Testing

Documentation is checked to ensure that the required user manual, maintenance

manuals and technical manuals exist and are consistent.

Usability Testing

Usability Testing also known as User Experience(UX) Testing, is a testing

method for measuring how easy and user-friendly a software application is. A

small set of target end-users, use software application to expose usability defects.

Usability testing mainly focuses on user's ease of using application, flexibility of

application to handle controls and ability of application to meet its objectives.

CHAPTER-7

UNDERSTANDING THE IMPORTANCE OF S/W RELIABILITY

DEFINITIONS OF SOFTWARE RELIABILITY Software reliability is defined as

the probability of failure-free operation of a software system for a specified time in

a specified environment. The key elements of the definition include probability of

failure-free operation, length of time of failure-free operation and the given

execution environment

Reliability of a software product essentially denotes its trustworthiness or

dependability. Alternatively, reliability of a software product can also be defined as

the probability of the product working “correctly” over a given period of time.

• It is obvious that a software product having a large number of defects is

unreliable.

Factors Influencing Software Reliability

•A user’s perception of the reliability of a software depends upon twocategories of

information.

 The number of faults present in the software.

 The way users operate the system. This is known as the operational profile.

Reasons for software reliability being difficult to measure

The reasons why software reliability is difficult to measure can be summarized as

follows:

• The reliability improvement due to fixing a single bug depends on where the bug is

located in the code.

• The perceived reliability of a software product is highly observer dependent

HARDWARE RELIABILITY VS. SOFTWARE RELIABILITY

Reliability behavior for hardware and software are very different.

For example, hardware failures are inherently different from software failures.

Most hardware failures are due to component wear and tear. A logic gate may be

stuck at 1 or 0, or a resistor might short circuit. To fix hardware faults, one has to

either replace or repair the failed part.

• MEAN TIME TO FAILURE (MTTF).

MTTF is the average time between two successive failures, observed over a large

number of failures. To measure MTTF, we can record the failure data for n failures.

Let the failures occur at the time instants t1, t2, …, tn. Then, MTTF can be

calculated.

• MEAN TIME TO REPAIR (MTTR).

Once failure occurs, some time is required to fix the error. MTTR measures the

average time it takes to track the errors causing the failure and to fix them.

• MEAN TIME BETWEEN FAILURE (MTBR).

MTTF and MTTR can be combined to get the MTBR metric: MTBF = MTTF +

MTTR. Thus, MTBF of 300 hours indicates that once a failure occurs, the next

failure is expected after 300 hours

PROBABILITY OF FAILURE ON DEMAND (POFOD).

Unlike the other metrics discussed, this metric does not explicitly involve

AVAILABILITY

Availability of a system is a measure of how likely shall the system be available

for use over a given period of time. This metric not only considers the number of

failures occurring during a time interval, but also takes into account the repair time

(down time) of a system when a failure occurs.

Classification of software failures A possible classification of failures of software

products into five different types is as follows:

• Transient. Transient failures occur only for certain input values while

invoking a function of the system.

• Permanent. Permanent failures occur for all input values while invoking a

function of the system.

interface

SOFTWARE QUALITY

Traditionally, a quality product is defined in terms of its fitness of purpose. That is,

a quality product does exactly what the users want it to do. For software products,

fitness of purpose is usually interpreted in terms of satisfaction of the requirements

laid down in the SRS document. Although “fitness of purpose” is a satisfactory

definition of quality for many products such as a car, a table fan, a grinding

machine, etc. – for software products,

• Portability: A software product is said to be portable, if it can be easily made

to work in different operating system environments, in different machines, with

other software products, etc.

• Usability: A software product has good usability, if different categories of

users (i.e., both expert and novice users) can easily invoke the functions of the

product.

• Reusability: A software product has good reusability, if different modules of

the product can easily be reused to develop new products.

• Correctness: A software product is correct, if different requirements as

specified in the SRS document have been correctly implemented.

• Maintainability: A software product is maintainable, if errors can be easily

corrected as and when they show up, new functions can be easily added to the

product, and the functionalities of the product can be easily modified, etc.

SOFTWARE QUALITY MANAGEMENT

A quality management system (often referred to as quality system) is the principal

methodology used by organizations to ensure that the products they develop have

the desired quality. A quality system consists of the following:

Managerial Structure and Individual Responsibilities.

A quality system is actually the responsibility of the organization as a whole.

However, every organization has a separate quality department to perform several

quality system activities.

- review of the quality system

- development of standards, procedures, and guidelines, etc

EVOLUTION OF QUALITY MANAGEMENT SYSTEM

Quality systems have rapidly evolved over the last five decades. Prior to World

War II, the usual method to produce quality products was to inspect the finished

products to eliminate defective products. Since that time, quality systems of

organizations have undergone through four stages of evolution as shown in the fig.

The initial product inspection method gave way to quality control (QC

	SOFTWARE ENGINEERING
	PROGRAM VBS SOFTWARE PRODUCT program
	Emergence of Software Engineering
	High-Level Language Programming (Early 60s)
	Control Flow-Based Design (late 60s)
	Data Structure-Oriented Design
	Object-Oriented Design

	SOFTWARE LIFE CYCLE MODELS
	Requirement Analysis
	Design

	CLASSICAL WATERFALL MODEL AND ITERATIVE WATERFALL MODEL
	Feasibility Study
	•TechnicalFeasibility
	Requirement Analysis and Specifications
	Requirements Gathering and Analysis
	Requirements Specification
	Design
	Traditional Design Approach
	Object-Oriented Design Approach
	Coding and Unit Testing
	Integration and System Testing
	Maintenance
	•Corrective Maintenance
	•Perfective Maintenance
	•Adaptive Maintenance

	ITERATIVE WATERFALL MODEL
	Advantages of Iterative Waterfall Model

	PROTOTYPING MODEL

	Spiral Model
	Spiral Model Strengths
	Spiral Model Weaknesses

	CHAPTER-2
	SOFTWARE PROJECT MANAGEMENT
	JOB RESPONSIBILITIES OF A SOFTWARE PROJECT MANAGER
	SKILLS NECESSARY FOR SOFTWARE PROJECT MANAGEMENT
	PROJECT PLANNING
	METRICS FOR PROJECT SIZE ESTIMATION

	LINES OF CODE
	FUNCTION POINT METRICS
	FP = UFP (Unadjusted Function Point) * TCF (Technical Complexity Factor) UFP = (Number of inputs) * 4 + (Number of outputs) * 5 + (Number of inquiries) *4 + (Number of files) * 10 + Number of interfaces) * 10 TCF = DI (Degree of Influence) * 0.01
	Feature Point Metric
	PROJECT ESTIMATION TECHNIQUES
	•EMPIRICAL ESTIMATION TECHNIQUES
	EXPERT JUDGMENT TECHNIQUE
	DELPHI COST ESTIMATION
	HEURISTIC TECHNIQUES
	COCOMO MODEL

	ORGANIC,
	Basic COCOMO
	Organic: Effort = 2.4(KLOC)1.05 PM Semi-Detached: Effort = 3.0(KLOC)1.12 PM Embedded: Effort = 3.6(KLOC)1.20 PM PM: Person Months
	Organic: Tdev = 2.5(Effort)0.38 Months Semi-detached: Tdev = 2.5(Effort)0.35 Months Embedded: Tdev = 2.5(Effort)0.32 Months
	(i)Organic Mode
	(ii)Semidetached Mode
	(iii)Embedded Mode
	Intermediate COCOMO
	Product
	Computer
	Personnel
	Development Environment

	Complete COCOMO / Detailed COCOMO
	ANALYTICAL ESTIMATION TECHNIQUES
	Halstead’s Software Science an Analytical Estimation Techniques
	Operators and Operands for the ANSI C Language
	Length and Vocabulary
	Program Volume
	Effort and Time
	Actual Length Estimation
	Work Breakdown Structure
	Activity Networks and Critical Path Method
	Critical Path Method

	GANTT CHART
	Team Structure
	Democratic Team
	Mixed Control Team Organization

	CHARACTERISTICS OF A GOOD SOFTWARE ENGINEER
	Importance of Risk Identification, Risk Assessment and Risk containment with reference to Risk Management
	Risk Identification
	•Project Risks
	•Technical Risks
	•Business risks

	Risks Assessment
	Risk Containment
	Avoid the Risk
	Transfer the Risk
	Risk Reduction

	CHAPTER-3
	REQUIREMENTS ANALYSIS AND SPECIFICATION
	REQUIREMENTS GATHERING AND ANALYSIS
	SOFTWARE REQUIREMENT SPECIFICATION
	❖Users, customers and marketing personnel
	❖Project Managers
	❖Maintenance Engineers

	CONTENTS OF THE SRS DOCUMENT
	Functional Requirement

	NONFUNCTIONAL REQUIREMENTS:-
	GOALS OF IMPLEMENTATION:-
	DOCUMENTING FUNCTIONAL REQUIREMENTS
	PROPERTIES OF A GOOD SRS DOCUMENT
	ORGANIZATION OF THE SRS DOCUMENT
	Goals of implementation
	Behavioral Description

	TECHNIQUES FOR REPRESENTING COMPLEX LOGIC:-
	DECISION TREE
	• New member • Renewal • Cancel membership New member option
	Renewal option
	Cancel membership option

	CHAPTER-4
	SOFTWARE DESIGN
	CHARACTERISTICS OF A GOOD SOFTWARE DESIGN
	Modularity
	Clean Decomposition
	Layered Design
	COHESION
	Low High CLASSIFICATION OF COHESION

	CLASSIFICATION OF COUPLING
	Object Oriented Design :

	STRUCTURED ANALYSIS METHODOLOGY
	USE OF DATA FLOW DIAGRAM
	LISTS THE SYMBOLS USED IN DFD
	CONSTRUCTION OF DFD
	CONTEXT DIAGRAM
	LEVEL 1 DFD
	DECOMPOSITION
	STRUCTURED DESIGN

	STRUCTURE CHART :
	TRANSFORM ANALYSIS
	Transaction Analysis

	CHAPTER-5
	USER INTERFACE DESIGN
	TYPES OF USER INTERFACE
	COMMAND LANGUAGE-BASED INTERFACES
	ISSUES IN DESIGNING A COMMAND LANGUAGE INTERFACE
	MENU-BASED INTERFACES
	WINDOW

	WINDOW MANAGER AND WINDOW SYSTEM
	WINDOW MANAGER
	TYPES OF WIDGETS
	LABEL WIDGET
	CONTAINER WIDGET
	PULL-DOWN MENU
	PUSH BUTTON
	RADIO BUTTONS
	COMBO BOXES
	X-WINDOW
	POPULARITY OF X-WINDOW
	ARCHITECTURE OF AN X-SYSTEM
	VISUAL PROGRAMMING

	CODING
	CODING STANDARDS AND GUIDELINES
	Aim of testing
	Global Data

	INTRODUCTION TO BLACK BOX TESTING
	BLACK BOX TESTING
	EQUIVALENCE CLASS PARTITIONING
	BOUNDARY VALUE ANALYSIS
	PATH COVERAGE
	Control Flow Graph (CFG)
	PATH

	MCCABE’S CYCLOMATIC COMPLEXITY METRIC
	Software
	Hardware
	Mobile
	Network

	CHAPTER-7
	UNDERSTANDING THE IMPORTANCE OF S/W RELIABILITY
	Factors Influencing Software Reliability
	Reasons for software reliability being difficult to measure

	HARDWARE RELIABILITY VS. SOFTWARE RELIABILITY
	SOFTWARE QUALITY MANAGEMENT
	EVOLUTION OF QUALITY MANAGEMENT SYSTEM

