| Discipline : | Semester:- | Name of the Teaching Faculty: | |------------------------------------|---|--| | ETC | 4 th | GANESH PRADHAN | | Subject:-
ELECTRICAL
MACHINE | No of Days/per
Week Class Allotted
:- | Semester From:- 14.02.2023 To:- 23.05.2023 | | Week | 04
Class Day | Theory | | VVCCK | 1 st | Properties of different conducting material. | | 1 st | 2 nd | uses of different conducting material | | | 3 rd | Properties of various insulating materials used electrical engineering | | | 4 th | uses of various insulating materials used electrical engineering | | | 1 st | Various magnetic materials | | | 2 nd | Uses of Various magnetic materials | | 2 nd | 3 rd | Construction, of DC Generator. | | | 4 th | Principle & application of DC Generator | | | 1 st | Classify DC generator including | | 3 rd | 2 nd | voltage equation.of dc generator | | | 3 rd | Derive EMF equation. | | | 4 th | simple problems on dc generator | | | 1 st | Parallel operation of DC generators. | | | 2 nd | Conditions for Parallel operation of DC generators | | 4 th | 3 rd | Principle of working of a DC motor | | | 4 th | Construction of a DC motor | | | 1 st | Concept of development of torque | | 5 th | 2 nd | back EMF in DC motor including simple problems | | | 3 rd | Derive equation relating to back EMF, Current, Speed and Torque equation | | | 4 th | Classify DC motors | | | 1 st | explain characteristics of dc motor | | | 2 nd | application of DC motors | | 6 th | 3 rd | Three point & four point stator/static of DC motor by solid State converter. | | | 4 th | Speed control of DC motor by field control method | | | 1 st | Speed control of DC motor by armature control method | | 7 th | 2 nd | Power stages of DC motor & derive Efficiency of a DC motor. | | | 3 rd | Mathematical representation of phasors, significant of operator "J" | | | 4 th | Addition, Subtraction, Multiplication and Division of phasor quantities | | 8 th | 1 st | AC series circuits containing resistance, capacitances, Conceptionof active ,Reactive and apparent power and Q-factor of series circuits & solverelated problems | | | 2 nd | Find the relation of AC Parallel circuits containing Resistances, Inductance and | | | -rd | Capacitances Q-factor of parallel circuits | | | 3 rd | . Construction & working principle of transformer | | | MAH 4th | Derive of EMF equation of transformer, voltage transformation ratio | |------------------|------------------------|--| | 5.2023 | - 14.07.2073 TO:- 23.0 | ord solboone2 | | 9 th | 1 st | Discuss Flux, Current, EMF components of transformer and their phasor diagram under no load Condition. | | | 2 nd | Phasor representation of transformer flux, current EMF primary and secondary Voltages under loaded condition | | | 3 rd | Types of losses in Single Phase (1-ø) Transformer | | | 4 th | Open circuit & short-circuit test (simple problems) | | 10 th | 1 st | Parallel operation of Transformer | | | 2 nd | Auto Transformer | | | 3 rd | Construction feature, types of three-phase induction motor. | | | 4 th | Principle of development of rotating magnetic field in the stator. | | 11 th | 1 st | Establish relationship between synchronous speed, actual speed and slip of induction motor. | | 11 | 2 nd | | | | 3 rd | Slip of induction motor Establish relation between torque, rotor current and power factor. | | | 4 th | | | | 4 | Methods of starting of I.M. | | 12 th | 1 st | Explain starting of an induction motor by using DOL and Star-Delta stator. | | | 2 nd | State industrial use of induction motor | | | 3 rd | Principle of capacitor type induction motor | | | 4 th | Construction features of operation of capacitor type induction motor | | 13 th | 1 st | Construction features of shaded pole type of single-phase induction motor | | | 2 nd | Principle of shaded pole type of single-phase induction motor | | 13 | 3 rd | Explain construction of AC series motor | | | 4 th | Explain operation of AC series motor | | 14 th | 1 st | Applications of AC series motor | | | 2 nd | Concept of alternator | | | 3 rd | Application of alternator | | | 4 th | PREVIOUS SEMESTER QUESTION DISCUSSION | | | | DISCUSSION OF ASSIGNMENT QUESTION CLASS TEST-II | | | 1 st | | | 15 th | 2 nd | | | 12 | 3 rd | OMR TEST | | | 4 th | | G. Prochan Teaching Faculty HOD,ETC