Discipline : MECHANI	Semester : 5th	Name of the Teaching Faculty:-PRADEEP KUMAR JENA
CALENGG	341	
Subject: MACHINE DESIGN	No. of days/per week classallotted: 04	Semester From date : 15.09.2022 To Date:22.12.2022 No. of Weeks: 15
Week	Class Day	Theory / Practical Topics
1ST	1ST	Introduction to Machine Design and Classify it.
	2 ND	Introduction to Machine Design and Classify it
	3 RD	Different mechanical engineering materials used in design with theiruses and their mechanical and physical
	4 TH	Different mechanical engineering materials used in design with theiruses and their mechanical and physical
2 ND	IST	properties Different mechanical engineering materials used in design with theiruses and their mechanical and physical properties
	2 ND	Different mechanical engineering materials used in design with theiruses and their mechanical and physical
-	3RD	Define working stress, yield stress, ultimate stress & factor of safety and stress – strain curve for M.S. & C.I. Modes of Failure (By elastic deflection, general yielding &
	4 TH	fracture) Define working stress, yield stress, ultimate stress & factor ofsafety and stress –strain curve for M.S & C.I. Modes of Failure (By elastic deflection, general yielding & fracture)
3RD	1ST	Define working stress, yield stress, ultimate stress & factor ofsafety and stress –strain curve for M.S & C.I. Modes of Failure (By elastic deflection, general yielding & fracture)
	2 ND	State the factors governing the design of machine elements
	₃ RD	Describe design procedure
	₄ TH	Describe design procedure
4.111	ST	Design of fastening elements
+	2 ND	Joints and their classification.
	3RD	State types of welded joints .
	4 TH	State advantages of welded joints over other joints
-TH	1ST	Design of welded joints for eccentric loads.
₅ TH	2 ND	State types of riveted joints and types of rivets
	3RD	Describe failure of riveted joints.
	4 TH	Determine strength & efficiency of riveted joints.
6TH	IST	Design riveted joints for pressure vessel
0	2 ND	Solve numerical on Welded Joint and Riveted Joint
	3RD	Solve numerical on Welded Joint and Riveted Joint Solve numerical on Welded Joint and Riveted Joint
	4 TH	Solve numerical on Welded Joint and Riveted Joint
7111	₁ ST	Design of shafts and Keys:State function of shafts. State materials for shafts.
	2 ND	Design solid & hollow shafts to transmit a given power at given rpm

		based on
		a) Strength: (i) Shear stress, (ii) Combined bending tension;
		b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
	3 RD	Design solid & hollow shafts to transmit a given power at givenrpm based on
		a) Strength: (i) Shear stress, (ii) Combined bendingtension;
		b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulusof rigidity
	4TH	Design solid & hollow shafts to transmit a given power at givenrpm based on
		a) Strength: (i) Shear stress, (ii) Combined bendingtension;
		b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulusof rigidity
ГН	1ST	State standard size of shaft as per I.S.
	2 ND	State function of keys, types of keys & material of keys.
	3 RD	Describe failure of key, effect of key way.
	₄ TH	Design rectangular sunk key considering its failure against shear& crushing.
9 TH	1 ST	Design rectangular sunk key by using empirical relation forgiven diameter of shaft
	2 ND	State specification of parallel key, gib-head key, taper key as
		perl.S.
	3 RD	Solve numerical on Design of Shaft and keys.
	₄ TH	Solve numerical on Design of Shaftand keys.
10 TH	1 ST	Design of Coupling:
		Design of Shaft Coupling.
	₂ ND	Requirements of a good shaft coupling
	3RD	Types of Coupling.
	₄ TH	Design of Sleeve or Muff-Coupling
11 TH	1ST	Design of Sleeve or Muff-Coupling
11	2 ND	Design of Clamp or Compression Coupling
	3RD	Design of Clamp or Compression Coupling
	4 TH	Design of Clamp or Compression Coupling
12 TH	1ST	Solve simple numerical on above
12111	2 ND	Solve simple numerical on above
	3RD	Solve simple numerical on above
	4 TH	Solve simple numerical on above
13 TH	1ST	Design a closed coil helical spring:
		Materials used for helical spring.
	₂ ND	Standard size spring wire. (SWG).
	3RD	Terms used in compression spring.
	4 TH	Stress in helical spring of a circular wire.
- TH	1ST	Deflection of helical spring of circular wire.
14 TH	2 ND	Deflection of helical spring of circular wire.
	3RD	Surge in spring.
	4TH	Solve numericalon design of closed coil helical compression

		spring.
15TH	ıST	Solve numericalon design of closed coil helical compressionspring.
	₂ ND	Solve numericalon design of closed coil helical compression
	3RD	spring. Solve numericalon design of closed coil helical compressionspring.
	4 TH	Solve numericalon design of closed coil helical compression
		spring.

Learning Resouces:

- 01 . Machine Design by Pandya & Shah, Charotar PP
- $02.\,$ A Textbook of Machine Design by R.S.Khurmi & J.K Gupta, S.Chand
- 03. A Textbook of Machine Design by P.C.Sharma & D.K.Agrawal,S,K,Kataria
- $04. \ \mathsf{Design}$ of Machine Elements by V.B.Bhandari, TMH
- 05. Design Data Book by S.MD. Jalaudeen. Anuradha Publication

Teaching Faculty

HOD(Mech)