| Discipline :MECHANICALENGG | Semester :3 rd | Name of the Teaching Faculty: MUKESH KUMAR DALEI. | |----------------------------------|---------------------------|--| | Subject:THERMAL
ENGINEERING-I | No. of days/per | Semester From date: 15.09.2022 To Date:22.12.2022 | | | week class
allotted:04 | No. of Weeks: 15 | | Week | Class Day | Theory / Practical Topics | | İsı | 1ST | Thermodynamic Systems (closed, open, isolated) enthalpy, Internal energy and units of measurement). | | | 2 ND | Thermodynamic properties of a system (pressure, volume, temperature, entropy, | | | 3 RD | Thermodynamic properties of a system (pressure, volume, temperature, entropy, | | | 4 TH | Intensive and extensive properties | | 2 ND | 1 ST | Define thermodynamic processes, path, cycle, state, path function, point function | | | 2 ND | Define thermodynamic processes, path, cycle, state, path function, point function | | | 3 RD | Thermodynamic Equilibrium. | | | 4 TH | Quasi-static Process. | | 3RD | 1 ST | Conceptual explanation of energy and its sources | | | 2 ND | Work , heat and comparison between the two | | | 3 RD | Mechanical Equivalent of Heat. | | | 4 TH | Work transfer, Displacement work | | ATH | 1ST | State & explain Zeroth law of thermodynamics. | | 4 TH | 2 ND | State & explain First law of thermodynamics. | | | 3 RD | Limitations of First law of thermodynamics | | | 4TH | Application of First law of Thermodynamics (steady flow | | | | energy equation and its application to turbine and compressor) | | 5 ^{ТН} | 1 ST | Application of First law of Thermodynamics (steady flow energy equation and its application to turbine and compressor) | | | 2 ND | Second law of thermodynamics (Claucius& Kelvin Plank statements). | | | 3 RD | Second law of thermodynamics (Claucius& Kelvin Plank statements). | | | 4 TH | Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P | | 6 TH . | 1 ST | Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P (solve simple numerical) | | | 2 ND | (solve simple numerical) | | | 3 RD | (solve simple numerical) | | | 4 TH | (solve simple numerical) | | 7 TH | IST | Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial pressure, Guy lussac law, General gas equation, characteristic gas constant, Universal gas constant. | | | 2 ND | Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial pressure, Guy lussac law, General gas equation, characteristic gas constant, Universal gas constant. | | | 3 RD | Explain specific heat of gas (Cp and Cv) | |------------------|-----------------|---| | | 4111 | Relation between Cp&Cv | | TII | 1sr | Enthalpy of a gas. | | | 2 ND | Work done during a non- flow process. | | | 3RD | Application of first law of thermodynamics to various non flow process (Isothermal, Isobaric, Isentropic and polytrophic process) | | | 4111 | Solve simple problems on above. | | 9111 | 1ST | Solve simple problems on above. | | | 2 ND | Free expansion & throttling process | | | 3 RD | Explain & classify I.C engine. | | | 4 TH | Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM. | | 10111 | IST | Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM. | | | 2 ND | Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine | | | 3RD | Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine | | | 4 TH | Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine | | 11 TH | 1 _{ST} | Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine | | | 2 ND | Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine | | | 3 RD | Carnot cycle | | | 4 TH | Otto cycle | | 12 TH | 1ST | Diesel cycle. | | | 2 ND | Dual cycle | | | 3 RD | Solve simple numerical | | | 4 TH | Solve simple numerical | | 13 TH | 12.1 | Solve simple numerical | | | 2 ND | Solve simple numerical | | | 3 RD | - | | | 4 TH | Solve simple numerical | | | 1ST | Solve simple numerical | | | \ 1 | Define Fuel. | | | 2 ND | Types of fuel. | | | 3 RD | Application of different types of fuel. | | | 4 TH | Application of different types of fuel. | | 15TH | 1 ST | Heating values of fuel. | | | 2 ND | Quality of l.C engine fuels Octane number, Cetane number. | | | 3 RD | Quality of I.C engine fuels Octane number, Cetane number. | | | 4111 | Quality of 1.C engine fuels Octane number, Cetane number. | ## Learning Resouces: - 01. Thermal Engineering, byR.S.Khurmi,S.Chand - 02. Thermal Engineeringby A.R. Basu, Dhanpat Rai - 03. Thermal Engineering, by A.S. Sarao, Satya Prakash - 04. Engineering Thermodynamics, by P.K. Nag, TMH - 05. Thermal Engineeringby Mahesh M Rathore, TMH (HOD, Mech) Mukesh kumar Dalei Lect. In Mechanical Engineering Govt. Polytechnic Dhenkanal.