Discipline :MECHANICALENGG	Semester :3 rd	Name of the Teaching Faculty: MUKESH KUMAR DALEI.
Subject:THERMAL ENGINEERING-I	No. of days/per	Semester From date: 15.09.2022 To Date:22.12.2022
	week class allotted:04	No. of Weeks: 15
Week	Class Day	Theory / Practical Topics
İsı	1ST	Thermodynamic Systems (closed, open, isolated) enthalpy, Internal energy and units of measurement).
	2 ND	Thermodynamic properties of a system (pressure, volume, temperature, entropy,
	3 RD	Thermodynamic properties of a system (pressure, volume, temperature, entropy,
	4 TH	Intensive and extensive properties
2 ND	1 ST	Define thermodynamic processes, path, cycle, state, path function, point function
	2 ND	Define thermodynamic processes, path, cycle, state, path function, point function
	3 RD	Thermodynamic Equilibrium.
	4 TH	Quasi-static Process.
3RD	1 ST	Conceptual explanation of energy and its sources
	2 ND	Work , heat and comparison between the two
	3 RD	Mechanical Equivalent of Heat.
	4 TH	Work transfer, Displacement work
ATH	1ST	State & explain Zeroth law of thermodynamics.
4 TH	2 ND	State & explain First law of thermodynamics.
	3 RD	Limitations of First law of thermodynamics
	4TH	Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
5 ^{ТН}	1 ST	Application of First law of Thermodynamics (steady flow energy equation and its application to turbine and compressor)
	2 ND	Second law of thermodynamics (Claucius& Kelvin Plank statements).
	3 RD	Second law of thermodynamics (Claucius& Kelvin Plank statements).
	4 TH	Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P
6 TH .	1 ST	Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P (solve simple numerical)
	2 ND	(solve simple numerical)
	3 RD	(solve simple numerical)
	4 TH	(solve simple numerical)
7 TH	IST	Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial pressure, Guy lussac law, General gas equation, characteristic gas constant, Universal gas constant.
	2 ND	Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial pressure, Guy lussac law, General gas equation, characteristic gas constant, Universal gas constant.

	3 RD	Explain specific heat of gas (Cp and Cv)
	4111	Relation between Cp&Cv
TII	1sr	Enthalpy of a gas.
	2 ND	Work done during a non- flow process.
	3RD	Application of first law of thermodynamics to various non flow process (Isothermal, Isobaric, Isentropic and polytrophic process)
	4111	Solve simple problems on above.
9111	1ST	Solve simple problems on above.
	2 ND	Free expansion & throttling process
	3 RD	Explain & classify I.C engine.
	4 TH	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
10111	IST	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
	2 ND	Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine
	3RD	Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine
	4 TH	Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine
11 TH	1 _{ST}	Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine
	2 ND	Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine
	3 RD	Carnot cycle
	4 TH	Otto cycle
12 TH	1ST	Diesel cycle.
	2 ND	Dual cycle
	3 RD	Solve simple numerical
	4 TH	Solve simple numerical
13 TH	12.1	Solve simple numerical
	2 ND	Solve simple numerical
	3 RD	-
	4 TH	Solve simple numerical
	1ST	Solve simple numerical
	\ 1	Define Fuel.
	2 ND	Types of fuel.
	3 RD	Application of different types of fuel.
	4 TH	Application of different types of fuel.
15TH	1 ST	Heating values of fuel.
	2 ND	Quality of l.C engine fuels Octane number, Cetane number.
	3 RD	Quality of I.C engine fuels Octane number, Cetane number.
	4111	Quality of 1.C engine fuels Octane number, Cetane number.

Learning Resouces:

- 01. Thermal Engineering, byR.S.Khurmi,S.Chand
- 02. Thermal Engineeringby A.R. Basu, Dhanpat Rai
- 03. Thermal Engineering, by A.S. Sarao, Satya Prakash
- 04. Engineering Thermodynamics, by P.K. Nag, TMH
- 05. Thermal Engineeringby Mahesh M Rathore, TMH

(HOD, Mech)

Mukesh kumar Dalei Lect. In Mechanical Engineering Govt. Polytechnic Dhenkanal.