DISCIPLINE : All Branches	SEMESTER : 3rd	NAME OF THE TEACHING FACULTY: And render subheyarm salus	
SUBJECT : NO. OF DAYS/PER WEEK CLASS ALLOTTED:04		SUBHOU ON SOURCE SEMESTER FROM DATE: 15/09/2022 TO DATE: 22/12/2022	
WEEK:	CLASS DAY :	NO. OF WEEKS : 15	
		THEORY TOPIC:	
	1 ST	Real and Imaginary numbers, Complex Numbers.	
1 st (Complex Numbers)	2 ND	Conjugate complex numbers, Modulus and Amplitude of a complex number.	
	3 RD .	Geometrical representation of complex number, Properties of Complex Numbers.	
	4 TH	Determination of three cube roots of unity and their properties.	
	157	De Moiestheorem.	
	2nd	Solved problems.	
2 nd (Complex Numbers) + (Matrices)	3rd	Basic concepts of matrices and Operation	
	4th	Sub matrix and Minors and Rank of a matrix.	
3 RD (Matrices)+ (Numerical Methods)	1st	Elementary transformation and Row Reduction Echelon Matrix.	
	2nd	System of Linear Equations and their consistency and solutions.	
	3rd	Introduction and Rounding off; Synthetic division of polynomials, Different types of Equations and their solution.	
	6213	Method of Bisection for solving equations.	
4 TH (Numerical Methods) + (Differential Equations)	1.st:	Solving equation by Newton Rap son Method.	
	2nd	Formula deduced from Newton- Rap son .method and solving Numericals based on their formulas .	
		ntroduction; order and degree and solution of 1 st order,1 st degree Equation .Exact Equations and their solutions.	
	4th	inear Equations and their solution. Rules for finding complementary uncdon. Solving various numerical to get complementary function.	

ţu,

WEEK:	CLASS DAY:	THEORY TOPIC:
5 TH (Differential	1 ^{sr}	Rules for getting particular integer of the type of function $e^{ax+\delta}$ and Numericals based on it.
	2 ND	Rules for getting P.i of the hyperbolic function $sin(ax + b)$ or $cos(ax + b)$ and solving numerical based on it.
	3 RD	Rules for getting P.I if the function is x^m ; m>0 and solving numerical based on it.
	4 ^{1H}	Rules for finding P.I if the function is $e^{ax}V$, where V is the function of x(1° shifting theorem).

6 TH (Differential Equation)	1ST	Rules for finding P.I if the function is any other function given above.
	2nd	Rules for finding P.I for special cases.
	3rd	Partial differential Equations of 1 st and 2 nd order and their formation.
	4th	Solving linear partial differential equations of 1 st order by Lagranges method and multipliers
7 th (Finite Difference &	1st	Introduction to finite difference and forming Forward and Back Difference table.
Interpolation)	2nd	Definition of shift operator (E) and Establish relation between E and the difference operator.
	3nd	Interpolation and Extrapolation, Newton's forward Difference Interpolation formula.
	4th	Problems based on Newton's Forward Difference Interpolation formula.
8 th (Finite Difference &	1st	Newtorfs Backward Difference Interpolation formula.
Interpolation)	2nd	Problems based on Newton's Backward Difference Interpolation formula.
	3rd	Lagrange's Interpolation Formula and numerical based on it.
	4th	Inverse interpolation Formula and problems based on it.
9 th (Finite Difference &	.1 ST	Definition of Numerical Integration and Newton's Cote's Formula.
Interpolation)	2 ND	Trapezoidal Rule and solving problems based on it.
	\mathfrak{Z}_{s_2}	Simpson's $\frac{1}{3}$ rd' Rule and problems based on it.
	413	Gemparison of both methods.
10 th /1 - 1	isr	Gamma function and its properties.
10 th (Laplace Transform)	2nd	Laplace Transformation of a function f(t), Existence of L.T and Linearity properties
	3rd	L.T of a const; L.T of t^n , n=+ve (integral), n= (fraction), L.T of $e^{\alpha t}$. Problems on it.
	4th	L.T of $\cos nat$, $\sin hat$, L.T of $\cos at$, $\sin at$, Application of it.
11 th (Laplace Transform)	1st	1.7 of Discontinuous functions and problems based on it.
	2nd	First snifting Theorem and Numericals. Second Shifting Theorem and Numericals based on it.
	3rd	Change of scale property and problems based on it. L.T of $e^{at}f(t)$,
	4th	$t^n f(t), \frac{1}{t} f(t)$, different problems based on it. Laplace Transform of the $n\pi$ derivatives. LT of the integer and example on it.
12 th (Laplace	1st	example on it. Inverse L.T and formula derived from Laplace Transformation.
Transform)	2nd	inverse Laplace Transformation, Partial Fraction Method.

	3rd	$L^{-1}\left[\frac{F(S)}{S}\right], L^{-1}\left\{F^{n}(S)\right\}.$
	4th	Solving Differential Equation in the Method of Laplace Transformation.
13 th (Fourier	1 ST	Periodic function , Even and odd functions, Some useful integrals.
Series)	2 ND	Dirichlet's condition for the Fourier expansion of a function and its convergence.
	3 RD	Periodic function f(x) satisfying Dirichlet's condition on a Fourier series.
	4 ¹¹⁴	Definition of Fourier series and Euler's formula.
14 th (Fourier Series)	257	F.S of simple function x and Deducing formulae from it.
	2nd	F.S of $x - x^2$, $x + x^2$, e^x , e^{-x} .
	3rd	Fourier series of some Trigonometry functions.
	4th	Fourier series of functions we can be deduced from the above trigonometry functions.
15 th (Fourier Series)	£sŕ.	Examples of Discontinuous function.
	2nd	Fourier Series of Even functions.
	3rd	Fourier series of Odd functions.
	400	Different Problems based on Fourier series.