Discipline : ETC	Semester:-	Name of the Teaching Faculty: -
210	6 th	
Subject:-	No of Days/per	Biswajit Mishra
Digital Signal Processing (Th. 3)	Week Class Allotted :- 04	Semester From:- 14.02.2023 To:- 23.05.2023
Week	Class Day	Thoons
1 st	1 st	Theory Basics of Signals, Systems & Signal processing- basic element of digital signal processing system
	2 nd	Compare the advantages of digital signal processing over analog signal processing
	3 rd	Classify signals - Multi channel& Multi-dimensional signals- Continuous time verses Discrete -times SignalContinuous value verses Discrete -valued signals.
	4 th	Concept of frequency in continuous time & discrete time signals- Continuous-time sinusoidal signals-Discrete-time sinusoidal
2 nd	1 st	signals-Harmonically related complex exponential. Analog to Digital & Digital to Analog conversion & explain the following. a. Sampling of Analog signal,
	2 nd	b. The sampling theorem.
	3 rd	c. Quantization of continuous amplitude signals,
	4 th	d. Coding of quantized sample.
	1 st	e. Digital to analog conversion.
3 rd	2 nd	f. Analysis of digital systems signals vs. discrete time signals systems.
	3 rd	Concept of Discrete time signals. Elementary Discrete time signals.
	4 th	Classification Discrete time signal.
4 th	1 st	Simple manipulation of discrete time signal
	2 nd	Discrete time system. Input-output of system.
	3 rd	Block diagram of discrete- time systems
	4 th	Classify discrete time system
5 th	1 st	Inter connection of discrete -time system.
	2 nd	Discrete time time-invariant system. Different techniques for the Analysis of linear system.
	3 rd	Resolution of a discrete time signal in to impulse
	4 th	Response of LTI system to arbitrary inputs using convolution sum
6 th	1 st	Convolution & interconnection of LTI system - properties.
		Study systems with finite duration and infinite duration impulse response
		Discrete time system described by difference equation. Recursive & non-recursive discrete time system
	4 th	Determine the impulse response of linear time invariant recursive system, Correlation of Discrete Time signals
7 th	1 st	THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEM.
	2 nd	Z-transform & its application to LTI system
	3 rd	Direct Z-transform.
	4"	nverse Z-transform.
8 th	1 st	
U.	1	/arious properties of Z-transform.

44 A TOTO BOOK

ALC: NO.

	2 nd	Rational Z-transform
	3 rd	Poles & zeros.
	4 th	Pole location time domain behaviour for casual signals
-	1 st	System function of a linear time invariant system.
9 th	2 nd	Discuss inverse Z-transform
	3 rd	Inverse Z-transform by partial fraction expansion
	4 th	
10 th	1 st	
	2 nd	Inverse Z-transform by contour Integration
	3 rd	DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES
	4 th	Concept of discrete Fourier transform.
11 th	1 st	Frequency domain sampling and reconstruction of discrete time
	2 nd	signals.
	3 rd	Discrete Time Fourier transformation(DTFT)
	4 th	Discrete Fourier transformation (DFT).
12 th	1 st	Compute DFT as a linear transformation
	2 nd	
	3 rd	Relate DFT to other transforms
	4 th	Property of the DFT.
	1 st	Multiplication of two DFT & circular convolution
13 th	2 nd	
	3 rd	FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTE
	4 th	Compute DFT & FFT algorithm
14 th	1 st	Direct computation of DFT
	2 nd	Divide and Conquer Approach to computation of DFT
	3 rd	
	4 th	Radix-2 algorithm. (Small Problems)
15 th	1 st	Application of FFT algorithms
	2 nd	Introduction to digital filters.(FIR Filters)& General considerations
	3 rd	Introduction to DSP architecture
	4 th	familiarization of different types of processor

Teaching Faculty

HOD, ETC