LESSON PLAN OF APPLIED CHEMISTRY

DISCIPLINE :	SEMESTER:	NAME OF THE TEACHING FACULTY: NAMITA BEHERA
All Branches	2nd	
SUBJECT :	NO. OF DAYS/PER	SEMESTER FROM DATE :4/2/2025
APPLIED	WEEK CLASS	TO DATE: 17/5/2025
WEEK:	CLASS DAY :	THEORY TOPIC:
1ST	151	Rutherford model of atom
	2 ^{NO}	Bohr's theory (expression of energy and radius to be omitted), and hydrogen spectrum explanation based on Bohr's model of atom,
	3 RD	Heisenberg uncertainty principle, Quantum numbers
	4 TH	orbital concept. Shapes of s,p and d orbitals, Pauli's exclusion principle
2ND	1 ST	Hund's rule of maximum multiplicity Aufbau rule, electronic configuration.
	2 nd	Concept of chemical bonding – cause of chemical bonding, types of bonds: ionic bonding
	3 rd	(NaCl example), covalent bond (H2, F2, HF hybridization in BeCl2, BF3
	4 th	CH4, NH3, H2O), coordination bond in NH4+, and anomalous properties of NH3, H2O due to hydrogen bonding, and metallic
3RD	1 st	Solution – idea of solute, solvent and solution, methods to express the concentration of solution molarity (M = mole per liter),
	2 nd	ppm, mass percentage, volume percentage and mole frac tion.
	3 rd	Graphical presentation of water distribution on Earth (pie or bar diagram). Classification of soft and hard water based on soap test
	4 th	salts causing water hardness, unit of hardness and simple numerical on water hardness.
4TH	1 st	Cause of poor lathering of soap in hard water, problems caused by the use of hard water in boiler (scale and sludge, foaming
	2 nd	priming, corrosion etc), and quantitative measurement of water hardness by ETD/method,
	3 rd	Water softening techniques – soda lime process, zeolite process and ion exchange process.
	4 th	Municipal water treatment (in brief only) – sedimentation, coagulation, filtration, sterilization.
5TH	1 ST	Water for human consumption for drinking and cooking purposes from any water sources
	2 ND	Natural occurrence of metals – minerals, ores of iron, aluminium and copper
	3 RD	gangue (matrix), flux, slag, metallurgy- brief account of general principles of metallurgy
	4 TH	Extraction of - iron from haematite ore using blast furnace
6ТН	1 ⁵⁷	aluminium from bauxite along with reactions.
	2 nd	Alloys – definition, purposes of alloying, ferrous alloys and non-ferrous with suitable examples, properties and applications

	3 rd	General chemical composition , composition based application:
1	3	Portland cement and hardening
	4 th	Classes Perfection and Comments
7711		Glasses Refractory and Composite materials
7TH	158	Polymers - monomer, homo and co polymers, degree of polymerization
	2 ⁿ⁸	simple reactions involved in preparation a
	2	nd their application of thermoplastics and thermosetting plastics
	3118	PVC, PS, PTFE, nylon – 6, nylon-6,6 and Bakelite
	4 th	rubber and vulcanization of rubber.
STH	1 ⁵¹	Unit 4: Chemistry of Fuels and Lubricants
	2 nd	Definition of fuel and combustion of fuel, classification of fuels
	3 rd	Calorific values (HCV and LCV), calculation of HCV and LCV using Dulong's formula,
		Proximate analysis of coal solid fuel, petrol and doesel- fuel rating
	4 th	Chemical composition, calorific values and applications of LPG
9TH	1 ST	CNG, water gas, coal
	2 ND	producer gas and biogas
	3 RD	Lubrication – function and characteristic properties of good lubricant
	4 TH	classification with examples,
10TH	1 ST	lubrication mechanism
	2 nd	hydrodynamic and boundary lubrication
	3 rd	physical proper- ties
	4 th	viscosity and viscosity index
11TH	1 st	oiliness, flash and fire point
	2 nd	could and pour point
	3 rd	chemical properties
	4 th	coke number, total acid number
12TH	1 st	saponification value
	2 nd	Unit 5: Electro Chemistry
	3 rd	Electronic concept of oxidation, reduction and redox reactions
	4 th	Definition of terms: electrolytes, non-electrolytes with suitable examples

13TH		
131H	151	Faradays laws of elactrolysis
	2 ND	simple problems
	3 RD	Industrial Application of electrolysis- Electrometallurgy
	4 TH	Electroplating and Electrolytic refining
14TH	1ST	Application of redox reaction in electrochemical cells- primary cells, dry cell
	2nd	secondary cell- commercially used lead storage battery
	3rd	fuel and solar cell
	4th	Introduction to Corrosion of metals- definition, types of corrosion (chemical and electrochemical)
15TH	1st	H2 liberation and O2 absorption mechanism of electrochemical corrosion
	2nd	factors affecting rate of corrosion
	3rd	Internal corrosion preventing measures - Purification, alloying heat treatment
	4th	External corrosion preventive measures: a) metal (anodic, cathodic) coatings, b) organic

Manuita Beherra.

Signature of Faculty

Principal

Govt. polytechnic, Dhenkanal