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CHAPTER 1 

CircuitElementsandLaws 

 

Voltage 

 

Energy is required for the movement of charge from one point to another. Let W 

Joules of energy be required to move positive charge Q columbs from a point a to 

pointb in a circuit. Wesay thata voltage exists between the twopoints. The voltage V 

between two points may be defined in terms of energy that would be required if a 

charge were transferred from one point to the other. Thus, there can be a voltage 

between two points even if no charge is actually movingfrom one to the other. Voltage 

between a and b is given by 

 

V=
W

J/C Q 

 

HenceElectricPotential(V)=
Workedare(W)inJoules 

 

Charge(Q)incolumbs 

 
Current : 

 

An electric currentis the movement of electric charges along a definite path. In case of 

a conductor the moving charges are electrons. 

The unit of current is the ampere. The ampere is defined as that current which when 

flowing in twoinfinitely long parallel conductors of negligible crosssection, situated 1 meter 

apart in Vacuum, produces between the conductors a force of 2 x 10-7 Newton per metre 

length. 

Power : Power is defined as the work done per unit time. If a field F newton acts for t 

seconds through a distance dmetres along a straightline, work done W = Fxd N.m. or J. The 

power P, either generated or dissipated bythe circuitelement. 

P=
w


Fxd 

t t 



Powercanalsobe writtenasPower=
Work 

 

time 
 

=  
Work 

Charge 
x
Charge


Time 

 

VoltagexCurrent 

 

P=VxIwatt. 

 

Energy: Electric energy W is defined as the Power Consumed in a given time. Hence, if 

current IAflows inanelement overatimeperiodtsecond, whenavoltageV volts isapplied across 

it, the energyconsumedis given by 

W=Pxt= VxIxtJorwatt.second. 

 

The unit ofenergy W is Joule (J) or watt. second.However, inpractice, the unit of 

energy is kilowatt. hour (Kwh) 

Resistance: According to Ohm's law potentialdifference (V) acrossthe ends ofa conductor is 

proportional to the current (I) flowing through the conductor at a constant 

temperature. Mathematically Ohm's law is expressed as 

 

 

 

 

OrR= 

VIor V=R xI 

V
whereRistheproportionalityconstantandisdesignatedastheconductor 

 

I 

resistanceandhastheunitofOhm(). 

 

Conductance :Voltage is induced in a stationaryconductorwhenplaced ina varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 

current, di/dt producing the magnetic field. 

Thereforee
di 

 

dt 

Ore=L
di 

dt 



eandiarebothfunctionoftime.TheproportionalityconstantLiscalledinductance. 

TheUnitofinductanceisHenery(H). 

 

Capacitance: A capacitor is a Physical device, which whenpolarized byan electricfield 

byapplying a suitable voltage across it, storesenergyinthe formofa charge separation. 

Theabilityofthecapacitortostorechargeismeasuredintermsofcapacitance. 

CapacitenceofacapacitorisdefinedasthechargestoredperVoltapplied. 

 

C=
q 


Coulomb
Farad v

 Volt 

 
ActiveandpassiveBranch: 

 

Abranch issaid to be active when itcontains oneor more energysources. Apassive 

branch does not contain an energy source. 

Branch: Abranch isanelementofthenetworkhaving onlytwoterminals. 

 

Bilateralandunilateralelement: 

 

A bilateral element conducts equally well in either direction. Resistors and inductors 

are examples of bilateralelements. When the current voltage relations are different for 

the two directions ofcurrent flow, the element is said to be unilateral. Diode is an 

unilateralelement. 

Linear Elements: When the current and voltage relationship in an element can be 

simulated by a linear equation either algebraic, differential or integral type,the element 

is said to be linear element. 

Non Linear Elements : When the current and voltage relationship in an element can 

not besimulated bya linear equation, theelement issaid to be nonlinear elements. 

Kirchhoff'sVoltageLaw(KVL): 

 

ThealgebraicsumofVoltages(orvoltagedrops) inanyclosedpathorloopisZero. 



ApplicationofKVLwithseriesconnectedvoltagesource. 

 

 

Fig.1.1 

 

V1+ V2–IR1–IR2= 0 

 

= V1+V2=I(R1 + R2) 

 

I=
V1V2 

R1R2 

 
ApplicationofKVLwhilevoltagesourcesareconnectedinoppositepolarity. 

 

Fig.1.2 

V1–IR1–V2–IR2–IR3= 0 

 V1–V2=IR1+IR2+IR3 

 V1–V2=I(R1+IR2+IR3) 



 I= 
V1V2 

R1R2R3 

 

Kirchaoff'sCurrentLaw(KCL): 

 

Thealgebraicsumofcurrentsmeetingatajunctionormodeiszero. 

 

Fig.1.3 

Considering five conductors, carrying currents I1,I2, I3, I4 and I5 meeting at a point O. 
Assuming the incoming currents to be positive and outgoing currents negative. 

I1+(-I2)+I3+(-I4)+I5=0 I1– 

I2+ I3– I4+ I5= 0 

I1+I3+I5=I2+I4 

Thus above Law can also be stated as the sum of currents flowingtowards any junction 

in an electric circuitis equal to the sum of the currents flowing away from that 

junction. 

VoltageDivision(SeriesCircuit) 

 

Consideringavoltagesource(E)withresistorsR1andR2inseriesacrossit. 
 

 

Fig.1.4 



E R 
I= 

 R2 

VoltagedropacrossR1=I.R1= E.R1 

R1R2 

SimilarlyvoltagedropacrossR2=I.R2= 
E.R1 

R1R2 

 

 

 
CurrentDivision: 

 

Aparallelcircuit actsasacurrent dividerasthecurrent dividesinallbranches ina 

parallelcircuit. 

Fig.1.5 

 

Fig.shownthecurrentIhasbeendivided intoI1andI2intwo parallelbrancheswith resistances 

R1and R2while V is the voltage dropacross R1and R2. 

V 
I1= 

R1 

andI2
V 

R2 

 

LetR=Totalresistanceofthe circuit. 

 

Hence 
1
= 1


1 

R 

 
 R= 

R1 R2 

 

 

R1R2  

R1R2 

1 



12 

1 1 

I2=
 IR1  

R1R2 

I=
V




R 

V 

R1R2  

R1R2 


V(R1R2) 

R1R2 

 

But=V=I1R1= I2R2 

 RR 
 I=IR 

R1R2

 
I= 

I1(R1R2) 

R2 

 

 

 

Therefore 

 

 

Similarlyitcanbederivedthat 
 

I1=
 IR2  

R1R2 



CHAPTER2 

 

MagneticCircuits: 

 

Introduction: Magnetic flux lines always form closed loops. The closed path 

followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit 

provides a path for magnetic flux,just as an electric circuit provides a path for the flow 

of electric current. In general, the term magnetic circuitapplies to any closed path in 

space, but in theanalysis of electro-mechanical and electronic system this term is 

specifically used for circuits containing a major portion of ferromagnetic materials. 

The study of magnetic circuit concepts is essential in the design, analysis and 

application of electromagnetic devices like transformers, rotating machines, 

electromagnetic relays etc. 

MagnetomotiveForce(M.M.F): 

 

Flux is produced round any current – carrying coil. In order to produce the required 

flux density, the coil should have the correct number of turns. The product of the 

current andthe number ofturns is defined asthe coilmagneto motive force (m.m.f). 

IfI=Current throughthecoil(A) N 

=Number ofturns inthe coil. 

Magnetomotiveforce=Currentxturns So 

M.M.F = I X N 

Theunit ofM.M.F. isampere–turn(AT) but it istakenas Ampere(A) since N has 

no dimensions. 

MagneticFieldIntensity 

 

MagneticField Intensityisdefined asthe magneto-motive forceper unitlengthofthe 

magnetic flux path. Its symbol is H. 



MagneticfieldIntensity(H)= Magnetomotiveforce 

Meanlengthofthemagneticpath 

 

 H=F


I.N.
A/m 

l l 

 
Where l isthe mean lengthofthe magnetic circuitin meters. Magnetic field intensityis also 

called magnetic field strength or magnetizing force. 

Permeability:- 

Every substance possesses a certain power ofconducting magneticlines of 

force. For example, iron is better conductor for magnetic lines of force than air 

(vaccum) . Permeability of a material () is its conducting power for magnetic 

lines of force. It is the ratio of the flux density. (B) Produced in a materialto the 

magneticfiled strength (H) i.e.  =B
H 

Reluctance: 

Reluctance (s) is akin to resistance (which limits the electric Current). 

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a 

measure of the opposition offered by a magnetic circuit to the setting up of the 

flux. 

Reluctance istheratioofmagnetomotive forcetotheflux.Thus 

 

SMmf




Itsunitisampereturnsperwebber(orAT/wb) 

 

Permeance:- 

 

Thereciprocalofreluctanceiscalledthepermeance(symbolA). 

 

Permeance (A) = 1/S wb/AT 

Turn T has no unit. 

Hencepermeanceisexpressedinwb/AorHenerys(H). 



ElectricFieldversusMagenticField. 

 

Similarities 

 

ElectricField 

1) FlowofCurrent(I) 

MagneticField 

1) Flowofflux() 
 

2) Emfisthecauseof 

flow of current 

2) MMfisthecauseof 

flow of flux 
 

3) Resistanceoffered 

to the flow of 

Current, is called 

resistance (R) 

Conductance 
4) 

()
1 

 

R 

5) Current density is 

amperespersquare 

meter. 

6) Current (I) -EMFR 

3) Resistanceofferedto 

the flow of flux, is 

calledreluctance(S) 

 

 

4) Permitivity() 





5) Fluxdensityisnumber 

of lines per square 

meter. 

6) Flux()
MMF 

S 

Dissimilarities 

 

1) Current actually flows 

inanelectricCircuit. 

1) Fluxdoesnotactually 

flow in a magnetic 

circuit. 
 

2) Energyis neededas 

longascurrentflows 

2) Energy is initially 

needed to create the 

magneticflux,butnot 

1 
S 



tomaintainit. 
 

3) Conductance is 

constant and 

independentofcurrent 

strengthataparticular 

temperature. 

3) Permeability (or 

magnetic 

conductance ) 

dependsonthetotal 

flux fora particular 

temperature. 

 

 

B.H.Curve: 

Place a piece of an unmagnetised iron bar AB within the field of a 

solenoid to magnetise it. The field H produced by the solenoid, is called 

magnetising field, whose value can be altered (increased or decreased) by 

changing (increasing or decreasing) the current through the solenoid. If we 

increase slowly the value of magnetic field (H) from zero tomaximum value, the 

value of flux density (B) varies along 1 to 2 as shown in the figure and the 

magnetic materials (i.e iron bar) finally attains the maximum value of flux 

density (Bm) at point 2 and thus becomes magneticallysaturated. 

 

Fig.2.1 

Now if value of H is decreased slowly (by decreasing the current in the 

solenoid) the corresponding value of flux density (B) does not decreases along 

2-1 but decreases some what less rapidly along 2 to 3. Consequently during the 

reversalofmagnetization, the value ofBis not zero, but is '13'at H= 0. Inother 



wards, duringthe period ofremovalof magnetization force (H), the ironbar is not 

completely demagnetized. 

 

In order to demagnetise the iron bar completely, we have to supply the 

demagnetisastion force (H) in the opposite direction (i.e. by reserving the 

direction of current in the solenoid). Thevalue of B isreduced to zero at point 4, 

when H='14'. This value ofH required to clear off the residual magnetisation, is 

known as coercive force i.e. the tenacity with which the material holds to its 

magnetism. 

 

If after obtaining zero value of magnetism, the value of H is made more 

negative, the iron bar again reaches, finally a state of magnetic saturation at the 

point 5, whichrepresents negative saturation. Now ifthe value ofH is increased 

from negative saturation (='45') to positive saturation ( = '12') a curve '5,6,7,2' is 

obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle of 

magnetisation and is known as hysteresis loop. 



c d 

R4 

p 

R1 V3 R8 

a  b e 

R2 

K h g f 

 

NETWORK ANALYSIS 

Differenttermsaredefinedbelow: 

1. Circuit:Acircuitisaclosedconductingpaththroughwhichanelectriccurrenteither 

. floworisintendedflow 

2. Network: A combination of variouselectricelements,connectedinany manner. 

Whatsoever, is called an electric network 

3. Node:itisanequipotentialpointatwhichtwoormorecircuitelementsarejoined. 

4. Junction:itisthatpointofanetworkwherethreeormorecircuitelementsare joined. 

5. Branch:itisapartofanetworkwhichliesbetweenjunctionpoints. 

6. Loop: Itisaclosedpathinacircuit inwhichno element ornodeisaccountedmorethan once. 

7. Mesh:Itisaloopthatcontainsnoother loopwithin it. 

Example3.1Inthiscircuitconfigurationoffigure 3.1,obtainthe no.ofi) circuitelements ii) nodes 

iii) junction points iv) branches and v) meshes. 
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R3 R9 V2 



Solution:i)no.ofcircuitelements=12(9resistors+3voltagesources) 

ii) no.ofnodes=10(a,b, c,d,e,f,g, h, k,p) 

iii) no.ofjunctionpoints=3 (b,e,h) 

iv) no.ofbranches=5(bcde,be,bh,befgh,bakh) 

v) no.ofmeshes=3(abhk,bcde,befh) 

MESH ANALYSIS 

Mesh and nodalanalysis are two basic important techniques used in finding solutions 

for anetwork.Thesuitabilityofeither meshor nodalanalysisto aparticular problemdepends 

mainlyon the number of voltage sources or current sources .If a network has a large number 

of voltage sources, it is useful to use mesh analysis; as this analysis requires that all the 

sources in a circuit be voltage sources. Therefore, if there are any current sources in a circuit 

theyareto be converted into equivalent voltage sources,if, onthe otherhand,the network has 

more current sources,nodalanalysis is more useful. 

Mesh analysis is applicable only for planar networks. For non-planar circuitsmesh analysis 

is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without 

crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover. 

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a 

planar circuit which looks like a non-planar circuit. Ithas already beendiscussed thata loop is a 

closed path. Amesh is defined as a loopwhichdoes not containanyother loops within it. To 

apply mesh analysis, our first step is to check whether the circuit is planar or not and the 

second is to select mesh currents. Finally, writing Kirchhoff‘s voltage law equations in terms 

ofunknowns and solving them leads to the final solution. 

 

(a) (b)  (c) 

Figure 3.2 

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the 

network.LetusassumeloopcurrentsI1andI2withdirectionsasindicatedinthefigure. 



Considering the loopabefaalone, weobserve that current I1ispassing throughR1,and (I1-I2) is 

passing through R2.Byapplying Kirchhoff’s voltage law, we canwrite 

Vs.=I1R1+R2(I1-I2) (3.1) 
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Figure3.3 

Similarly, if we consider the second mesh bcdeb, the current I2 is passing through 

R3and R4, and (I2 – I1) is passing through R2. By applying Kirchhoff’s voltage law around the 

second mesh, we have 

R2(I2-I1)+R3I2+R4I2= 0 (3.2) 

 

 

Byrearrangingtheaboveequations,thecorrespondingmeshcurrentequationsare 

I1(R1+R2) - I2R2 =Vs. 

-I1R2+(R2+R3+R4)I2=0 (3.3) 

 

 

By solving the above equations, we can find the currents I1 and I2,.If we observe 

Fig.3.3,the circuit consistsoffive branchesand four nodes, including the reference node.The 

number of mesh currents is equalto the number ofmesh equations. 

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of 

mesh current would be 5-(4-1)=2. 

a b c 

R2 

R4 

± 
I1 I2 

f e d 



IngeneralwehaveBnumberofbranchesandNnumberofnodesincludingthe reference 

node than number of linearly independent mesh equations M=B-(N-1). 

 

 

 

 

 

 

 

 

Example3.2Writethemesh 

 

 

currentequationsinthecircuitshown 10 V 

 

 

infig3.4anddeterminethecurrents. 

 

 

Figure3.4 

Solution: Assume two mesh currents in the direction as indicated in fig. 

Themeshcurrentequationsare 

 

 

5Ω 
 

 

10V I1 

2Ω 

I2 10Ω 

50V 

 

 

Figure3.5 

5I1+2(I1-I2)=10 

1012+2(12-11)+50=0 (3.4) 

Wecanrearrangetheaboveequationsas 7I1 -

2I2 =10 

-2I1+12I2=-50 (3.5) 

Bysolvingtheaboveequations,wehaveI1=0.25A,andI2=-4.125 

5Ω 10Ω 

2Ω 

50v 



Herethe currentinthe second meshI2, is negative;that isthe actualcurrent I2 flowsopposite to 

the assumed direction ofcurrentinthe circuitof fig .3.5. 

Example3.3DeterminethemeshcurrentI1inthecircuitshowninfig.3.6. 

 

 

10Ω 2Ω   

 

 

5Ω I2 + 10V 

I1 1Ω 

50V ‐ 

3Ω 5V 

I3 
 
 

 

Figure3.6 

 

 

Solution: From the circuit, we can from the following three mesh equations 

10I1+5(I1+I2)+3(I1-I3)=50 (3.6) 

2I2+5(I2+I1)+1(I2+I3)= 10 (3.7) 

3(I3-I1)+1(I3+I2)=-5 (3.8) 

Rearrangingtheaboveequationsweget 

18I1+5I2-3I3=50 (3.9) 

5I1+8I2+I3=10 (3.10) 

-3I1 +I2+4I3=-5 (3.11) 

AccordingtotheCramer’srule 



I1 R2 I2 V2 I3 

356 

 

50 5 3
10 8 1

 

I=
5 1 4

=
1175 

118 5 3
 

356 
5 8 1

3 1 4 
 

OrI1=3.3ASimilarly, 

18 50 3

5 10 1




3 5 4 355 

I
2
=

18 5 3


=

356 

 5 8 1 
 3 1 4 

 

Or I2=-0.997A (3.12) 

18 5 50 

5 8 10

3 1 5
 

525 
I
3
= 

18 5 3
  

5 8 1
3 1 4 

 

OrI3=1.47A (3.13) 

I1=3.3A,I2=-0.997A,I3=1.47A 

MESH EQUATIONSBY INSPECTIONMETHODThe meshequations for a general planar network can be writtenby 

inspection without going through the detailedsteps. Consider athree mesh networks as shown in figure 3.7 

The loop equation are I1R1+ R2(I1-I2) =V1 R1

 R3R4 

 

 

 

 

 

 

V1 R5 

 

 

 

 

Figure3.7 



R2(I2-I1)+I2R3=-V2 3.14 

R4I3+R5I3=V2 3.15 

Reorderingtheaboveequations,wehave 

(R1+R2)I1-R2I2=V1 3.16 

-R2I1+(R2+R3)I2=-V2 3.17 

(R4+R5)I3=V2 3.18 

Thegeneralmeshequations forthreemeshresistivenetworkcanbewrittenas R11I1 

 R12I2  R13I3= Va 3.19 

R21I1+R22I2R23I3=Vb 3.20 

R31I1R32I2+R33I3=Vc 3.21 

Bycomparing the equations 3.16,3.17 and 3.18 with equations 3.19, 3.20 and 3.21 
respectively, the following observations can be taken into account. 

1. Theself-resistanceineachmesh 

2. Themutualresistances betweenallpairsofmeshesand 

3. Thealgebraicsumofthevoltagesineach mesh. 
The self-resistance of loop 1, R11=R1+R2, is the sum of the resistances through which 

I1passes. 

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop 

currents I1 and I2. Ifthe directions ofthe currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 

passing through the common resistance are opposite then the mutual resistance will have a 

negative sign. 

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if 
the direction of the currents is the same as the direction of the source. If the current 

direction is opposite to the direction ofthe source,thenthe negative sign is used. 

Similarly R22=R2+R3 and R33=R4+R5 are the self-resistances of loops 2 and 3 
respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R32=0 are the 
sums ofthe resistances common to the mesh currents indicated intheir subscripts. 

Vb=-V2,Vc=V2arethesumofthevoltagesdriving theirrespectiveloops. 



1
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Example3.4writethemeshequationforthecircuitshowninfig.3.8 
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Figure3.8 

Solution:thegeneralequationforthreemeshequationare 

R11I1R12I2 R13I3=Va (3.22) 

 R21I1+R22I2 R23I3=Vb (3.23) 

R31I1R32I2+R33I3=Vc (3.24) 

Considerequation3.22 

R11=selfresistanceofloop1=(1Ω+ 3Ω+6Ω)=10Ω 

R12=themutualresistance commontoloop1 andloop2=-3Ω 

Herethenegativesignindicatesthatthecurrentsareinoppositedirection. 

R13=the mutualresistance common to loop 1 & 3= -6 Ω 

Va=+10V,thevoltagethedrivingtheloop1. 

HerehepositivesignindicatestheloopcurrentI1isinthesamedirectionasthe source 

element. 

Thereforeequation3.22 canbe writtenas 



10I1-3I2-6I3=10V (3.25) 

ConsiderEq.3.23 

R21=themutualresistance commontoloop1 andloop2=-3Ω 

R22= self resistance of loop 2=(3Ω+ 2 Ω +5 Ω) =10 Ω 

R23=0,thereisno commonresistance betweenloop2and3. Vb= 

-5 V, the voltage driving the loop 2. 

ThereforeEq.3.23canbewrittenas 

-3I1 +10I2=-5V (3.26) 

ConsiderEq.3.24 

R31=the mutualresistancecommonto loop1andloop3= -6Ω R32= 

the mutual resistance common to loop 3 and loop 2 = 0 R33= 

selfresistance of loop 3=(6Ω+ 4 Ω) =10 Ω 

Vc=thealgebraicsumofthevoltagedrivingloop 3 

=(5 V+20V)=25V (3.27) 

Therefore, Eq3.24canbe writtenas-6I1+10I3= 25V 

-6I1-3I2-6I3= 10V 

-3I1+10I2=-5V 

-6I1+10I3=25V 

SUPERMESHANALYSIS 

Suppose anyofthe branches in the network has a current source, then it is slightly difficult to 

apply mesh analysis straight forward because first we should assume an unknown voltage 

across the current source, writing mesh equation as before, and then relate the source current 

tothe assigned meshcurrents. This is generallya difficult approach. Onwaytoovercome this 

difficulty is by applying the supermesh technique. Here we have to choose the kind of 

supermesh. A supermesh is constituted by two adjacent loops that have a common current 

source. As anexample, consider the network shown in the figure 3.9. 
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Figure3.9 
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5Ω 
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HerethecurrentsourceIis inthecommonboundaryforthetwo meshes1and2. Thiscurrent source 

creates asupermesh, which is nothing but a combination of meshes 1 and 2. 

R1I1 + R3(I2-I3)=V 

Or R1I1+R3I2-R4I3=V 

Consideringmesh3,wehave 

R3(I3-I2)+R4I3=0 

Finallythecurrent I fromcurrentsourceisequaltothedifference betweentwo meshcurrents i.e. 

I1-I2=I 

wehavethusformedthreemeshequationswhichwecansolve forthethreeunknown currents in the 

network. 

Example3.5.Determinethecurrentinthe5ΩresistorinthenetworkgiveninFig.3.10 
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Figure3.10 

Solution:-Fromthefirstmesh,i.e. abcda,wehave 

50=10(I1-I2)+5(I1-I3) 

Or15I1-10I2-5I3=50 (3.28) 

 

Fromthesecondandthirdmeshes.wecanformasupermesh 

10(I2-I1)+2I2+I3+5(I3-I1)=0 

Or-15I1+12I2+6I3=0 (3.29) 



ThecurrentsourceisequaltothedifferencebetweenIIandIIImeshcurrents 

i.e.I2-I3=2A (3.30) 

Solving3.28.,3.29and 3.30.wehave 

I1=19.99A,I2=17.33A,and I3=15.33A 

Thecurrentinthe5Ωresistor =I1-I3 

=19.99 -15.33=4.66A 

Thecurrentinthe5Ωresistoris4.66A. 

Example 3.6. Writethe meshequations for the circuitshown in fig. 3.11 and determine the 

currents, I1, I2and I3. 

 

 

 

 

 

 

 

 

1Ω 

 

 

 

 

 

Figure3.11 

 

 

Solution ; Infig 3.11, the currentsource lies onthe perimeter ofthe circuit,and the first 

mesh is ignored. Kirchhoff‘s voltage law isapplied onlyfor second and third meshes. 

Fromthesecondmesh,wehave 

3(I2-I1)+2(I2-I3)+10 =0 

Or -3I1+5I2-2I3=-10 (3.31) 

 

 

Fromthethirdmesh,wehave I3 

+ 2 (I3 -I2) =10 

Or -2I2+3I3=10 (3.32) 

10V 

I1 

I2 I3 

10A 3Ω 

2Ω 

I II III 



R2 R4 

R1 R3 

1 2 

R1 

Fromthe first mesh, I1=10A (3.33) 

Fromthe abovethree equations, we get 

I1=10A, I2=7.27, I3=8.18A 

 

 

NODALANALYSIS 

In the chapter I we discussed simple circuits containing only two nodes, including the 

reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum 

node, then it is possible to write N -1nodal equations by assuming N-1 node voltages.Forexample,a10 

node circuit requires nine unknown voltages and nine equations. Each node in a circuit can be 

assigned a number or a letter. The node voltage is the voltage of a given node with respect to 

oneparticular node, calledthereferencenode, whichweassumeat zeropotential. Inthecircuit shown in fig. 

3.12, node 3 is assumed as theReference node. The voltage at node 1 is the voltage at that node with 

respect to node3. Similarly, the voltageat node2 is the voltageat that nodewith respect to node 3. 

Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See Fig.3.13) 

1 2 

 

 

 

 

 

I1 R5 

 

 

 

 

 

 

3 Figure3.12 

R2 

 

I1 

 

 

 

 

 

 

 

 

Figure3.13 

I1= V1/R1 + (V1-V2)/R2 



10Ω 2Ω 

3Ω 

5Ω 5A 1Ω 

WhereV1andV2arethevoltagesatnode1and2,respectively.Similarly,atnode 

2.thecurrententeringisequaltothecurrentleavingasshowninfig.3.14 

 

 

 

 

 

 

Figure3.14 
 

 

 

 

(V2-V1)/R2+V2/R3+V2/(R4+R5)=0 

Rearrangingtheaboveequations,wehave 

V1[1/R1+1/R2]-V2(1/R2)=I1 

-V1(1/R2)+V2[1/R2+1/R3+1/(R4+R5)]=0 

Fromtheaboveequationswecanfindthevoltagesateachnode. 

Example3.7Determinethevoltagesateachnodeforthecircuitshowninfig3.15 

3Ω 

 

 

 

 

 

 

 

10V 6Ω 

 

Figure3.15 

 

Solution:At node1,assumingthat allcurrentsareleaving,wehave (V1-

10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0 
Or V1[1/10+1/3+1/5+1/3]-V2[1/3+ 1/3]=1 

0.96V1-0.66V2=1 (3.36) 

At node2,assumingthat allcurrentsareleavingexcept thecurrent fromcurrent source,we have 
(V2-V1)/3+(V2-V1)/3+(V2-V3)/2= 5 
-V1[2/3]+V2[1/3+1/3+1/2]-V3(1/2)=5 

-0.66V1+1.16V2-0.5V3=5 (3.37) 

R2 R4 

R3 R5 



a b 

R2 R4 

c 

0.96 0.66 0 

 0 

 0 

Atnode3assumingallcurrentsareleaving,wehave (V3-

V2)/2 + V3/1 + V3/6 =0 

-0.5V2+ 1.66V3=0 (3.38) 

ApplyingCramer’sruleweget 

 1 0.66 0 

5 1.16 0.5 

V=
 0 

0.5 1.66 

=

7.154
8.06 

1 
0.96 0.66 0  

0.887 

0.66 1.16 0.5
 

0.5 1.66


 0 
Similarly, 

 0.96 1 
 

0.66 5 

V=
 0 0 

 

 

0 

0.5 

1.66 







=

9.0610.2 
2  0.887 
0.66 1.16 0.5
 

 0.5 1.66



 0.96 
 

0.66 

0.66 1 

1.16 5 

V= 0.5 0 


2.733.07 
3 0.96 0.66 0 

 0.887 

0.66 1.16 0.5
 

0.5 1.66


 0 

NODALEQUATIONSBYINSPECTIONMETHOD Thenodalequationsfora generalplanarnetwork canalsobewrittenbyinspectionwithout 

going through thedetailed steps. Considera three noderesistivenetwork, including thereference node,as shownin fig 3.16 

 

R1 R3 R5 

 

 

 

 

 

 

V1 

 

V2 

 

 

 

 

 

Figure3.16 



Infig. 3.16thepointsaandbaretheactualnodesandc isthereference node. 

Nowconsider the nodes a and bseparatelyas shown in fig 3.17(a) and (b) 

 

R1Va R3 R3 Vb R5 

 Vb Va 

 

 

 

V1 

 

 

 

 

 

Figure3.17 

 

Infig3.17(a),accordingtoKirchhoff’scurrentlawwehave 

I1+I2+I3=0 

(Va-V1)/R1+Va/R2+(Va-Vb)/R3=0 

 

 

 

(3.39) 

 

Infig3.17(b),ifweapplyKirchhoff’scurrentlaw  

I4+I5=I3 
 

(Vb-Va)/R3+Vb/R4+(Vb-V2)/R5=0 (3.40) 

Rearrangingtheaboveequationsweget  

(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1)V1 (3.41) 

(-1/R3)Va+(1/R3+1/R4+1/R5)Vb=V2/R5 (3.42) 

Ingeneral,theabove equationcanbewrittenas 
 

GaaVa+GabVb=I1 
 

(3.43) 

GbaVa+GbbVb=I2 
 (3.44) 

Bycomparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 

a, Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly, 

Gbb= (1/R3 + 1/R4 +1/R5) is the sum of the conductances connected to node b. Gab=(-1/R3) is 

the sum of the mutual conductances connected to node a and node b. Here all the mutual 

conductances have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance 

connected between nodes b and a. I1 and I2 are the sum of the source currents at node a and 

node b, respectively. The current which drives into the node has positive sign, while the 

current that drives away fromthe node has negative sign. 

I1 I5 I3 

 

R2 

(a) 

I3 

 

R4 I4 

I5 

V2 

(b) 



 

 

 

 

 

Example3.8forthecircuitshowninthe figure3.18writethenodeequationsbythe 

inspection method. 
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Fig3.18 

 

Solution:- 

Thegeneralequationsare 

 

GaaVa+GabVb=I1 (3.45) 

GbaVa+ GbbVb=I2 (3.46) 

Considerequation3.45 

 

Gaa=(1+1/2+1/3)mho.Theselfconductanceat nodeaisthesumoftheconductances connected to 

node a. 

Gbb=(1/6+1/5+1/3)mho theselfconductanceat node bisthesumofconductances connected to 

node b. 

Gab=-(1/3)mho,themutualconductances betweennodesaandb isthesumofthe conductances 

connected between node a and b. 

SimilarlyGba =-(1/3),thesumofthe mutualconductances betweennodes banda. I1=10/1 

=10 A, the source current at node a, 

a b 

1Ω 3Ω 2Ω 

5Ω 

10V 2Ω 

2V 5V 



1 2 3 

R2 VX 

R1 R3 R4 

VY 

I2=(2/5+5/6)=1.23A,thesourcecurrentat nodeb. 

Therefore, the nodal equations are 

1.83Va-0.33Vb=10 (3.47) 

 

-0.33Va+0.7Vb= 1.23 (3.48) 

SUPERNODE ANALYSIS 

Suppose anyofthe branches inthe networkhas avoltage source,then it is slightlydifficult to 

apply nodal analysis. One way to overcome this difficulty is to apply thesupernode technique. 

In this method, the two adjacent nodes that are connected by a voltage source are reduced to a 

single node and then the equations are formed by applying Kirchhoff’s current law as usual. 

This is explained with the help of fig. 3.19 

V1 V2 + _ V3 

 

 

 

 

 

 

 

I R5 
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FIG3.19 

 

 

 

 

 

Itisclear fromthefig.3.19,that node4isthereferencenode.Applying Kirchhoff’scurrent law at 

node 1, we get 

I=(V1/R1)+(V1-V2)/R2 

 

Due to the presence of voltage source Vχ in between nodes 2 and 3 , it is slightly 

difficult to find out the current. The supernode technique can be conveniently applied in this 

case. 

Accordingly,wecanwritethecombined equationfornodes2and 3asunder. 



20V 

1Ω 5Ω 

10A3Ω 

10V 

(V2-V1)/R2+V2/R3+(V3-Vy)/R4+V3/R5= 0 

 

Theotherequationis 

V2-V3 =Vx 

Fromtheabovethree equations,we canfindthe threeunknownvoltages. 
 

 

 

 

Example3.9Determinethecurrentinthe5Ωresistorforthecircuitshowninfig. 

3.20 

2Ω 

V1 V2 +_---- V3 

 

 

2Ω 

 

 

fig.3.20 

 

 

 

 

Solution.Atnode1 

10=V1/3+(V1-V2)/2 

Or V1[1/3+1/2]-(V2/2)-10=0 

0.83V1-0.5V2-10=0 (3.49) 

 

At node2and3,thesupernodeequationis 

 

(V2-V1)/2+V2/1+(V3-10)/5+V3/2=0 

 

Or –V1/2+V2[(1/2)+1]+V3[1/5+1/2]=2 

 

Or -0.5V1+1.5V2+0.7V3-2=0 (2.50) 

 

Thevoltagebetweennodes2and 3isgivenby 

 

V2-V3=20 (3.51) 



a 

The current in 5Ω resistor I5=(V3-10)/5 

Solvingequation3.49,3.50and3.51,weobtain 

V3 =-8.42V 

 

 CurrentsI5=(-8.42-10)/5=-3.68A(current towardsnode3)i.ethecurrent flows 

towards node 3. 

 

 

 

 

 

SOURCETRANSFORMATIONTECHNIQUE 

In solving networksto find solutions one may have to dealwith energysources. It has 

already been discussedin chapter 1 that basically, energy sources are eithervoltage sources or 

current sources. Sometimes it is necessaryto convert a voltagesource to a current source or 

vice-versa.Any practical voltage source consists of an ideal voltage source in series with an 

internal resistance. Similarly, a practical current source consists of an ideal current source in 

parallel with an internal resistance as shown in figure3.21. Rv and Ri represent the internal 

resistances ofthe voltage source Vs,and current source Is,respectively. 
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VS IS 

 

 

 

 

 

 

 

b fig.3.21 b 

 

 

Any source, be it a current source or a voltage source, drives current through its load 

resistance,andthemagnitudeofthecurrentdependsonthevalueoftheloadresistance.Fig 

3.22representsapracticalvoltagesourceandapracticalcurrentsourceconnectedtothe same load 

resistance RL. 
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(a) (b) 

Figure3.22 

Fromfig3.22(a)theloadvoltagecanbecalculated byusing Kirchhoff’s voltage lawas 

Vab=Vs-ILRv 

TheopencircuitvoltageVoc=Vs 

TheshortcircuitcurrentIsc=
Vs 

Rv 

 

fromfig3.22(b) 

 

IL=Is-I=Is-(Vab/R1) 

TheopencircuitvoltageVoc=IsR1Th

e short circuit current Isc=Is 

The above two sources are said to be equal, if they produce equal amounts of current 

and voltage when theyare connected to identical load resistances. Therefore, byequating the 

opencircuit votages and short circuitcurrentsofthe above two sources weobtain 

Voc=IsR1=VsIsc=Is=V

s/Rv 

It follows that 

R1=Rv=Rs; Vs=IsRs 

where Rs is the internal resistance of the voltage or current source. Therefore, any 

practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be 

replacedby acurrentsource Is=Vs/Rs in parallel with aninternal resistanceRs.The reverse 

 a  

VS IL 



tansformation is also possible. Thus, a practical current source in parallel with an internal 

resistance Rs can be replaced by a voltage source Vs=IsRs in series with an internal resistance 

Rs. 

Example 3.10 Determine the equivalent voltage source for the current source shown in fig 

3.23 

A 

 

 

5A 

 

 

 

 

B 

Figure3.23 

Solution:ThevoltageacrossterminalsAandBisequalto25V. sincetheinternalresistance for the 

current source is 5 Ω, the internalresistance ofthe voltage source is also 5 Ω. The 

equivalentvoltage source is shown in fig. 3.24. 

5Ω 

 

 

 

 

25V 

 

 

 

 

 

 

Fig3.24 
 

Example3.11Determinetheequivalentcurrentsourceforthevoltagesourceshowninfig.3.25 

 

A 

 

 

50V 

5Ω 

A 

B 

30Ω 



 

Solution:theshort circuit current atterminalsAandB isequalto I= 

50/30 = 1.66 A 

A 

1.66A 

 

 

B 

Fig3.26 

Sincetheinternalresistanceforthevoltagesourceis30Ω,the internalresistanceof 

thecurrentsourceisalso30Ω.Theequivalentcurrentsourceisshowninfig.3.26. 

30Ω 



 

NETWORKTHEOREMS 

Beforestartthetheoremweshouldknowthebasic termsofthenetwork. 

Circuit:Itisthecombinationofelectricalelementsthroughwhichcurrent passes 

is called circuit. 

Network: It is the combination of circuits and elements is called network. 

Unilateral:Itisthecircuitwhoseparameterandcharacteristicschangewith change 

in the direction ofthe supplyapplication. 

Bilateral:Itisthecircuitwhoseparameterandcharacteristicsdonotchange with 

the supply in either side ofthe network. 

Node:Itisthe interconnectionpointoftwoormorethantwoelementsis called 

node. 

Branch:Itistheinterconnectionpointofthreeormorethanthreeelements is called 

branch. 

Loop:It isacompleteclosedpathinacircuitand noelementornode istaken more 

than once. 

Super-PositionTheorem: 

Statement :''Itstates thatina networkoflinearresistances containingmore than one 

source the current which flows at any point is the sum of all the currents which 

would flow at that point if each source were considered separatelyand allother 

sources replaced fortime being leaving its internalresistances ifany''. 
 

Explanation : 

ConsideringE1source 

 

Step1. 

R2&rareinseriesandparallelwithR3andagainserieswithR1 



(R2+r2)||R3 


(R2r2)R3m 
R2 r2 R3 

Rt1mR1r1 

I
E1 

 
 

1 Rt1 

I I1 R3 

2

 R2r2R3I


I1(R2r2) 

3 R2r2R3 

Step–2 

 

(say) 

ConsideringE2source,R1&r2areseriesandR3parallelandR2inseries 

 

(R1+r1)||R3 


(R1r1)R3n 
R1r1R3 

Rt2nR2r2 

I
E2 

2 Rt 

 

(say) 

2 

/ I(Rr) 

I3R21r1R1 
1 1 3 

I/ I2R3  
1 RrR 

1 1 3 

Step–3 
CurrentinR1branch=II/ 

1 1 

CurrentinR2branch=I I/ 

CurrentinR3 branch=I 
2

I/
2 

3 3 

Thedirectionofthebranchcurrentwillbe inthedirectionofthe greatervalue current. 

Thevenin’s Theorem: 

Thecurrentflowing through theload resistanceR1 connectedacrossany two 

terminals Aand B ofa linear active bilateral network is givenby 
Vth 

ILRR
V 

RocR 
th L i L 

Where Vth = Vocis the open. circuit voltage across Aand B terminalwhenRL is 

removed. 

Ri =Rth is the internal resistances of the network as viewed back into the open 

circuit network fromterminals A& Bwith allsources replaced by their internal 

resistances if any. 



Explanation : 
 

Step–1forfindingVoc 

RemoveRLtemporarilyto findVoc. 

I 
E 

 

R1R2r Voc 

IR2 

Step–2finding Rth 

Removeallthesourcesleavingtheirinternalresistancesifanyand viewed from open 

circuit side to find out Ri or Rth. 
 

Ri(R1r)||R2R 


(R1r)R2 

i R1rR2 

Step–3 
 

Connectinternal resistancesandThevenin’svoltagein serieswithload resistance 

RL. 



Where Rth=theveninresistance 

Vth=thevenin voltage 

Ith=thevenin current 

Ri(R1r)||R2 

I 
Vth 

 
V

oc 

L RR RR 
th L i L 

Example 01- Applyingthevenintheoremfindthe followingfromgiven 

figure 

(i) theCurrentintheloadresistanceRLof15


Solution:(i)FindingVoc 

Remove15resistanceandfindtheVoltageacross AandB 
 

Voc is the voltage across 12 resister 

Voc =
 241218V 

1231 

 

(ii) FindingRth 

RthiscalculatedfromtheterminalA&Bintothenetwork. 

The 1resister and 3in are series and then 

parallel 

Rth=3+1// 12 

 


412

3
1

6 



 

 

 

 

 

(iii) I =
Voc 

18 
1A. 

th   

RLR 153 

Example02:Determinethecurrent in1Ωresistoracross ABofthe network shownin 

fig(a) using thevenin theorem. 

Solution:Thecircuirtcanberedrawnasinfig(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fig(a),(b),(c),(d)respectively 

 

 

 

Step-1 remove the 1Ω resistor and keeping open circuit .The current source is 

converted to the equivalent voltage source as shown in fig (c) 

Step-02forfindingtheVthwe'llapplyKVLlaw infig(c) then

 3-(3+2)x-1=0 

x=0.4A 

Vth=VAB=3-3*0.4=1.8V 

Step03-forfindingtheRth,allsourcesaresetbezero Rth=2//3=(2*3)/(2+3)=1.2Ω 

Step04-ThencurrentIth=1.8/(12.1+1)=0.82A 



Example03: The four arms of a wheatstone bridge have the following 

resistances . 

AB=100Ω,BC=10Ω,CD=4Ω,DA=50Ω.AA galvanometer of 20Ω 

resistance is connected across BD. Use thevenintheoremto compute the current 

through the galvanometer when the potential difference10Vismaintained across 

AC. 

 

 

 

 

 

 

 

 

 

 

Solution: 

  

step01-Galvanometerisremoved. 

step02-findingtheVthbetweenB&D.ABCisapotentialdivideronwhicha voltage 

drop of 10vtakes place. 

PotentialofBw.r.tC=10*10/110=0.909V 

Potential of D w.r.t C=10*4/54=.741V 

then, 

p.dbetweenB&DisVth=0.909-.741=0.168V 

Step03-finding Rth 

removeallsourcestozerokeepingtheirinternalresistances. 



Rth =RBD=10//100+50//4=12.79Ω 

Step04; 

lastlyIth=Vth/Rth+RL=0.168/(12.79+20)=5mA 

 

 

 

 

 

 

Norton'sTheorem 

Statement : In any two terminal active network containing voltage sources and 

resistances when viewed from its output terminals in equivalent to a constant 

current source and a parallel resistance. The constant current source is equal to 

the current which would flow in a short circuit placed across the terminals and 

parallel resistance is the resistance of the network when viewed from the open 

circuit side after replacing their internal resistances and removing allthe sources. 

OR 

Inany two terminalactive network the current flowing through the load 

resistance RL is given by 

I 
IscRi

L

  RiRL 

Where Ri is the internal resistance of the network as viewed from the open ckt 

side A & B with all sourcesbeing replaced by leaving their internal resistances if 

any. 

Iscistheshortcktcurrentbetweenthetwoterminals ofthe loadresistance when 

it is shorted 

Explanation : 

 

Step–1 

A&BareshortedbyathickcopperwiretofindoutIsc 

IscE/(R1r) 



 

Isc=E/ (R1+r) 

Step–2 

Removeall thesourceleavingitsinternalresistanceif any andviewedfrom 

opencircuitsideAandBintothenetworktofindRi. 

 
Ri(R1r)||R2 

Ri(R1r)R2/(R1rR2) 
 

 

Step–3 

 

ConnectIsc&RiinparallelwithRL 

I  
IscRi

L

  RiRL 

Example 01:Using norton'stheorem find the current that would flow through the 

resistor R2 whenit takes the values of 12Ω,24Ω&36Ω respectively in the fig 

shown below. 

Solution: 



LL 

 

Step 01-remove the load resistance by making short circuit.now terminal AB 

short circuited. 

Step02-FindingtheshortcircuitcurrentIsc 

FirstthecurrentduetoE1is=120/40=3A,andduetoE2is180/60=3A. then 

Isc=3+3=6A 

Step03-findingresistanceRN 

Itiscalculatedbybyopencircuitthe loadresistanceand viewed fromopen circuit 

and into the network and allsources are takenzero. 

RN=40//60=(40*60)/(40+60)=24Ω 

i) whenRL=12Ω,IL=6*24/(24+36)=4A 

ii) whenRL=24Ω,IL=6/2=3A 

iii) whenRL=36Ω,IL=6*24/(24+36)=2.4A 

 

 

 

 

 

MaximumPowerTransferTheorem 

Statement : A resistive load will abstractmaximum power from a network when 

the load resistance is equal to the resistance of the networkas viewed from the 

output terminals(Open circuit) with all sources removed leaving their internal 

resistancesif any 

Proof: 

I 
Vth 

L RiRL 

Powerdeliveredtotheload 

resistance is given by 
PLI2R 
 

2 

 
V

th R 

RiRL

L 



R) 

V 

(PL)max Vth2 

4RL
2 

V2R 
(R

th L2 

i L 

PowerdeliveredtotheloadresistanceRLwillbe maximum 

When
dPL 0 

dRL 

d V2R 
dR(RthRL)2

 0 

L i L 
V2(RR)2V2R2(RR) 

 th i L thL 

(RiRL) 
i L0 

V2(RR)2V2R2(RR)0 
th i L thL i L 

V2(RR)22V2R(RR) 0 
th i L thL i L 

V2(RR)22V2R(RR) 
th i L thL i L 

RiRL2RL 

Ri2RLRL 

RiRL 

 V2 

(PL)max
 th 

RL 
(RiRL)

2


V2

 thRL 

4RL
2


2 

 thRL 

4RL
2 

 

 

 

 

 

 

 

MILLIMAN’STHEOREM: 

According to Millimans Theorem number of sourcescan be converted into 

a single source with a internal resistance connected in series to it,if the sources 

are in parallel connection. 

AccordingtotheMilliman’stheoremtheequivalentvoltagesource 

E
1
E

1
E

1
.. 

1 
R 

2 
R 

3 
R 

E' 1 2
1 

3 
 

1


1 

R1 R2 

 ..... 

R3 

4 



  . 


6 


E1G1E2G2E3G3.. 

G1G2G3... 
E1

E2
E3.. 


R1 R2 R3

 G1G2G3

.... 


I1I2I3.. 

G1G2G3... 

Example–Calculatethecurrentacross5ΩresistorbyusingMilliman’sThm. Only 

Solution:-Given, 

R1=2Ω, R2=6Ω , R3=4Ω, RL=5Ω 

E1=6v, E2=12v 

theresistanceR2isnotcalculatedbecausethereisnovoltagesource 
E1

E2
E3 

Vol=E
R1 

 
 

R2 R3 

1


1


1
.  

R1 R2R3 

6
0

12 

2 4 
1 1 1 
2 6 4 


303 

623 
12 

 

 

 

2 

11 

 

 

 

 

6.54v 

R 
1 

1 1


1


1 

R1 R2 R3 


1


12
1.09.2 

 

  

11 11 

12 

I 
Voc 

L 

1.095 


6.54

1.07Amp. 

1.095 

COMPENSATIONTHEOREM: 

Statement: 

It’s states that in a circuit any resistance ‘R” in a branch of network in 

which a current ‘I’ is flowing can be replaced. For the purposes of calculations 

by a voltage source = - IR 

OR 



If the resistance of any branch of network is changed from R to R +4R 

where the currentflowing originaly isi. The change current at any other place in 

the network may be calculated by assuming that one e.m.f – I  R has been 

injected into the modified branch. While all other sources have their e.m.f. 

suppressed and ‘R’ represented by their internal resistances only. 
 

Exp–(01) 

Calculatethevaluesofnewcurrentsinthenetworkillustrated ,whenthe 

resistor R3 is increased by 30%. 

Solution:-Inthegivencircuit,the values ofvariousbranchcurrentsare 
I175/(510)5A 

I3I2 


520
2.5Amp. 

40 

NowthevalueofR3,whenit increase30% 

R320(200.3)26

IR2620 6

VIR 

 

2.56 

15V 520 100 

5||20515 20


 4
25 

I' 
15
0.5Amp 

3 4 26 30 

I'
0.55

0.1Amp 
2   

0.52520 

I' 0.4Amp 
1 25 

I1" 5  0.4  4.6Amp 

I2"0.12.52.6Amp 

I3"2.50.52Amp 

RECIPROCITYTHEOREM: 

Statement: 





It states that in any bilateral network, if a source of e.m.f ‘E’in any branch 

produces a current ‘I’ any other branch.Then the same e.m.f ‘E’ acting inthe 

second branchwould produce the same current ‘I’ inthe 1st branch. 

 

 

Step–1FirstammeterBreadsthecurrentinthisbranchduetothe36vsource, the 

current is given by 

4||12
412

3

16 
R243 9

I
36
4Amp 

9 

I 
412 

B 1231 


48
3Amp 

16 

IB=currentthrough1resister 

 

Step–(II)Theninterchangingthe sources and 

measuring the current 

6||12
612


72
4

612 18 

R4318













I
36
4.5Amp,I

4.512
3AmpTransferresistance=

V


36
12. 

8 A 62 I 3 

 

COUPLEDCIRCUITS 

Itisdefinedastheinterconnected loopsofanelectricnetworkthroughthe magnetic 

circuit. 

Therearetwotypesofinducedemf. 

(1) StaticallyInducedemf. 

(2) DynamicallyInducedemf. 

Faraday’sLawsofElectro-Magnetic: 

Introduction FirstLaw:

Wheneverthe magnetic flux linkedwitha circuitchanges, anemf is induced in it. 



OR 

Wheneveraconductorcutsmagneticfluxanemfis inducedinit. 

SecondLaw:

Itstates that the magnitude ofinduced emf is equaltothe rate ofchange offlux 

linkages. 

OR 

The emf induced is directly proportional to the rate of change of flux and 

number of turns 

Mathematically: 

e
d

dt 

eN 

Or e =N
d

dt 

Where e=inducedemf 

N=No.ofturns 

=flux 

‘-ve’signisduetoLenz’sLaw 

Inductance:

It isdefinedasthepropertyofthesubstancewhichopposesanychange in 

Current & flux. 

Unit:Henry 

Fleming’sRightHandRule:

It states that “hold your right hand with fore-finger, middle finger and 

thumb at right angles to each other. If the fore-finger represents the direction of 

field, thumb represents the directionofmotionofthe conductor, thenthe middle 

finger represents the direction of induced emf.” 

Lenz’sLaw:

It states that electromagnetically induced current always flows in such a 

direction that the action of magnetic field set up by it tends to oppose the vary 

cause which produces it. 

OR 

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit opposes the 

change of magnetic flux. 

(2) DynamicallyInducedemf:



e=Blvsin


 

In this case the field is stationary and the conductors are rotating in an 

uniform magnetic field at flux density ‘B” Wb/mt2 and the conductor is lying 

perpendicular to the magnetic field. Let ‘l’ is the length of the conductor and it 

moves a distance of‘dx’ nt intime ‘dt’ second. 

Theareasweptbytheconductor=l.dx 

Hencethefluxcut=ldx.B 

Changeinfluxintime‘dt’second= 

E=Blv 

WhereV
dx 

 

dt 

Bldx 

dt 

Ifthe conductorismakinganangle‘’withthemagneticfield,then 

(1) StaticallyInducedemf:

Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by 

increasing or decreasing. 

Itisdividedintotwotypes. 

(i) Self-inducedemf. 

(ii) Mutually-induced emf. 

(i) Self-induced emf : It is defined as the emf induced in a coildue to the 

change of its ownflux linked withthe coil. 

If current through thecoilischangedthen thefluxlinkedwithitsown 

turnwillalso change whichwillproduce an emf is called self-induced emf. 

 

Self-Inductance:



Itisdefinedasthepropertyofthecoilduetowhichitopposesany change 

(increase or decrease) ofcurrent or flux through it. 

 

Co-efficientofSelf-Inductance (L):

Itisdefinedastheratioofweberturnsperampereofcurrent inthecoil. 

OR 

Itistheratiooffluxlinkedperampereofcurrentinthe coil 

1stMethodfor‘L’:

L
N

I 

Where L=Co-efficientofself-induction N 

= Number of turns 

=flux 

I=Current 

 

 

2ndMethodforL:

Weknowthat 

L
N

I 

LIN
LIN

L
dI
N

d

dt dt 

L
dI
N

d

dt
 

dt 

L
dI
e 

dt L 

L
dI 

dt 
eL 

e 
L L 

dI 
dt 

WhereL=Inductance 

eN
d

isknownasself-inducedemf. 
L dt 

When
dI
1amp/sec. 

dt 

e=1volt 

L=1Henry 



Acoilissaidtobeaself-inductanceof1Henryif1voltisinducedinit. 

Whenthecurrentthroughitchangesattherateof1amp/ sec. 

3rdMethodforL:

L
MoMrAN2 

l 

WhereA=Areaofx-sectionofthecoil N = 

Number of turns 

L=Lengthofthecoil 

(ii) MutuallyInducedemf:

It is defined as the emf induced in one coil due to change in current in 

other coil. Consider two coils ‘A’ and ‘B’ lyingclose to eachother. Anemfwill be 

induced in coil ‘B’ due to change of current in coil ‘A’ by changing the position 

of the rheostat. 
 

MutualInductance:

Itisdefinedastheemfinducedincoil‘B’duetochangeofcurrentincoil 

‘A’ istheratiooffluxlinkageincoil‘B’to1amp.Ofcurrentincoil‘A’. 

Co-efficientofMutualInductance(M) 

Coefficient of mutual inductance betweenthe two coils is defined as the 

weber-turns inone coildue to one ampere current inthe other. 

1stMethodfor‘M’:

M
N21 

I1 

N2 = Number of turns 

M=MutualInductance 

1=fluxlinkage 

I1=Current inampere 

2ndMethodforM :

Weknowthat 

M
N21 

I1 

MI1N21 

MI1N21 



l 

l 

2 

M
dI

1N 
 

 

dt 2 

M
dI1e 

dt M 

M
dI1e 

 
 

dt M 

M
eM 

dI1

dt 

d1

dt 

Where eM 

 

N2 

d
1is knownasmutuallyinduced emf. 

 
 

dt 

eM1volt 

ThenM=1Henry 

Acoil issaidtobea mutualinductanceof1Henrywhen1 volt is 

induced whenthe currentof1 amp/sec. is changed in its neighbouringcoil. 

3rdMethodforM:

M
MoMrAN1N2 

l 

Co-efficientofCoupling: 

ConsidertwomagneticallycoupledcoilshavingN1andN2 turns 

respectively. Their individual co-efficient of self-inductances are 
MMAN2 

L
1
 o r 2 

l 
MMAN2 

L
2
 o r 2 

l 

Theflux1producedincoil‘A’duetoacurrentofI1ampereis 
LI MMAN2 I 


1
11 o r 11 

N1 l N1 

1
MoMrAN1I1 

Supposeafractionofthisfluxi.e.K11 islinkedwithcoil‘B’ 

ThenM
K11N KNN ---------------------------------- (1) 

 11 2 

I l/MMA 
1 o r 

Similarlythe flux2producedincoil‘B’duetoI2amp.Is 

2
M1MrAN2I2 

Supposeafractionofthisfluxi.e.K22 islinkedwithcoil‘A’ 

ThenM
K22NK 2 N 21 N1 -------------------------------------------------------------------------- (2) 

I 1 l / M M A 
2 o r 

Multiplyingequation(1)& (2) 



K
M. 

L1.L2 

2 KKN2N2 

M 2122
1
2

2
2 

l/M0MrA 

N1 

2MMAN2MMAN2

K o 


r 1 o 


r 2



QK1K2K
M2K2.L.L 

12 

K2
M2. 

L1.L2 

Where‘K’isknownastheco-efficientofcoupling. 

Co-efficientofcouplingisdefinedastheratioofmutualinductance 

betweentwo coils to the square root oftheir self- inductances. 

 

InductancesInSeries(Additive):


Let M=Co-efficientofmutualinductance 

L1 = Co-efficient of self-inductance offirst coil. 

L2=Co-efficientofself-inductanceofsecondcoil. 

EMFinducedinfirstcoilduetoself-inductance 

eLL
dI 

 

1 1dt 
Mutuallyinducedemfinfirstcoil 

M
dI 

M 

dt 
EMFinducedinsecondcoilduetoselfinduction 

eL L 
dI 

2 2dt 
Mutuallyinducedemfinsecondcoil 

M
dI 

M 
2 

dt 
Totalinducedemf 

ee e e e 
L1 L2 M1 M2 

If‘L’istheequivalentinductance,then 

l l 

1 
e 

e 



2 

LL1L22M 

LdI L
dI 

M
dI
L dI

M
dI 

dt 1dt dt 2dt dt 

L
dI


dI
(LL2M) 

2 

dt dt 1 

 

Inductances InSeries(Substnactive) :

Let M=Co-efficientofmutualinductance 

L1=Co-efficientofself-inductanceoffirstcoil 

L2-=Co-efficientofself-inductanceofsecondcoil Emf 

induced in first coil due to self induction, 

e L
dI 

L1 1dt 
MutuallyinduceddeImfinfdirIstcoil 

e M M 


M1 
 dt dt 

Emfinduced insecondcoilduetoself-induction 

e L
dI 

L2 2dt 
MutuallyinduceddeImfinsdeIcondcoil 

e M M 

M  dt
 

dt 

Totalinducedemf 
ee  e ee 

d
L

I
1 L2 M1 M2 

dI ThenL L dI 
1 

dI
M

dI  

dt dtL2dtMdt dt 

L
dI


dI
(LL2M) LLL2M 

dt dt 1 
2 1 

InductancesInParallel:

2 



2 

M 



dt dt 



LettwoinductancesofL1&L2areconnectedinparallel 

Lettheco-efficentofmutualinductancebetweenthemisM. 

Ii1i2 

dI 


di1
di2 (1) 

dt dt dt 

eLdi1M
di2 

1dt dt 

L
di2M

di1 

dt dt 

L
di1M

di2Ldi2 di1 
1dt dt 2dt dt 

(LM)
di1(LM)

di2 

1 dt 2 dt 


di1

(L2M)di2 -(2) 
dt (L1M)dt 

dI


di1
di2dt

 dt dt 


(L2M)di2

di2 

(L1M )dt dt dI

 L2M di2 
dtLM1dt (3) 

1 
If‘L’istheequivalentinductance 

eL
di 

dt L1 

di1
dt 

di2 
M 

dt 

L
di
Ldi1M

di2 
 

ddti 
1 


1L

di1M
di2 ---------------------------------- (4) 

     
dt L1dt dt

Substitutingthevalueof
di1 

dt 
di


1 L2 M di2------------------------------------------------------- 

  L M   (5) 

dt 
L1L1M 


dt 

Equatingequation(3)&(5) 







L
L1 

LLM2 
12 

L2M 2 

L  12  

L1L22M 

LLM2 

L2M1di21L1L2MMdi2 

LM dt L LM dt 
1    1  

LM 1 LM 

L2M 2 

1 1
L
L1L1M

M
LMLM 1 LLLMLMM2

2 1  
12 1 1 


L1M L L1M 

LL2M 1LLM2

1 2  
12 


L1M L L1M 

LL2M
1LLM2

1 2 L 12 

Whenmutualfieldassist. 

 

 

Whenmutualfieldopposes. 

CONDUCTIVELYCOUPLEDEQUIVALENTCIRCUITS 

 

 The Loopequationare fromfig(a)  
VLdi

M
di2 

1 1dt dt 

VLdi2M
di1 

2 2dt dt 
 

 

 

 

 

 Theloopequationarefromfig(b) 
 

 

V(L M)
di1M 

 
 

1 1 dt 

d 

(i1i2) 
dt 



V(L M)
di2M 

 
 

2 2 dt 

d 

(i1i2) 
dt 

Which,onsimplificationbecome 

VLdi1M
di2 

1 1dt dt 

VLdi2M
di1 

2 2dt dt 

Socalledconductivelyequivalentofthemagneticcircuit. Herewemay 

representZA = L1-M . 

ZB= (L2-M)andZC=M 

Incase M is + ve and boththe currents thenZA=L1-M , ZB = L2-Mand ZC = M, 

also , ifis – ve and currents in the common branch opposite to each other ZA= 

L1+M , ZB = L2+M and ZC = - M. 

Similarly, if M is –ve but the two currents inthe common branchare additive, 

then also. 

ZA=L1+M,ZB=L2+MandZC= -M. 

FurtherZA , ZB and ZC may also be assumed to be the T equivalent of the circuit. 

Exp.-01: 

Two coupled cols have self inductancesL1= 1010-3H and L2= 2010-3H. 

The coefficient of coupling (K) being 0.75 in the air, find voltage in the second 

coiland the flux of first coil provided the second coils has 500 turns and the 

circuit current is given by i1 = 2sin314.1A. 

Solution: 

MK 

M0.751010320103 

M10.6103H 

 

Thevoltageinducedinsecondcoilis 

M
di1

M 
di 

2 dt 
d 

dt 

10.6103 (2sin314t) 
dt 

10.61032 314cos 314t. 

ThemagneticCKtbeinglinear, 

M
N22

500(K1) 

i1 

 
M 

500K 

 

i1 

i1 


10.6103 

2sin314t 500 
0.75 

=5.6610-5sin314t 

L1L2 



1 
5.66105sins314t. 

Exp.02 

Find the total inductance of the three series connected coupled 

coils.Where the self and mutual inductances are 

L1 = 1H, L2 = 2H, L3 = 5H 

M12=0.5H,M23=1H,M13=1H 

Solution: 

LA =L1 +M12+M13 

=1+20.5 +1 

=2.5H 

LB =L2 +M23+M12 

=2+1 +0.5 

=3.5H 

LC =L3 +M23+M13 

=5+1 +1 

=7H 

Totalinductancesare 

Lea =LA+LB+Lc 

=2.5+3.5+7 

=13H(Ans) 

Example03: 

Two identical 750 turn coils A and B lie in parallel planes. A current 

changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate 

the mutual inductance of the arrangement .If the self inductance of each coil is 

15mH, calculate the flux produced in coil A per ampere and the percentage of 

this fluxwhich links the turns of B. 

Solution:Weknowthat 

now, 

Wb/A 



A.CFUNDAMENTAL 

DirectCurrent AlternatingCurrent 

 

 

 

 

(1) D.C. always flow in

 onedirection and whose 

magnitude remains constant. 

(1) A.C. is one which

 reverseperiodically in 

direction and whose magnitude 

undergoes a definite cycle changes 

in definite intervals of time. 

(2) 
Highcostofproduction. 

(2) Lowcostofproduction 

(3) 

 

 

(4) 

It is not possible by D.C. 

BecauseD.C. isdangerous tothe 

transformer. 

Itstransmissioncostistoohigh. 

(3) 

 

 

(4) 

ByusingtransformerA.C.voltage can 

be decreased or increased. 

A.C.can betransmittedtoalong 

distance economically. 

 

 

DefinitionofA.C.terms:- 

Cycle:Itisonecompletesetof+veand–vevaluesofalternatingquality spread over 

360 or 2 radan. 

TimePeriod:Itisdefinedasthetimerequiredtocompleteonecycle. 

Frequency:Itisdefinedasthereciprocaloftimeperiod. i.e.f=1/T 

Or 

Itisdefinedasthenumberofcyclescompletedpersecond. 

Amplitude :It is defined as the maximumvalue ofeither +ve halfcycle or–ve 

halfcycle. 

Phase:Itisdefinedastheangulardisplacementbetweentwohavesiszero. 



OR 

Two alternating quantity are inphase 

when each pass through their zero value at 

the same instant and also attain their 

maximum value at the same instant in a 

given cycle. 

 

V=Vmsinwt 

i=Imsin wt 

 

PhaseDifference:-Itisdefinedastheangulardisplacementbetweentwo alternating 

quantities. 

OR 

If the angular displacement between two waves are not zero, then that is 

knownas phase difference. i.e. ata particular time theyattain unequaldistance. 
 

OR 
Two quantities are out of phase if they reach their maximum value or 

minimumvalueatdifferenttimesbutalways haveanequalphaseanglebetween them. 

HereV= Vmsinwt 

i=Imsin(wt-) 

Inthiscasecurrentlagsvoltagebyanangle‘’. 

PhasorDiagram: 

GenerationofAlternatingemf:- 

Consider a rectangular coil of‘N” turns, area ofcross-section is ‘A’ nt2 is 

placed in 

x-axis in an uniform magnetic field of maximum flux density Bm web/nt2. The 

coil is rotating in the magneticfield with a velocity of w radian / second. At time 

t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make 

rotating in anti-clockwise direction and makesan angle ‘’with x-direction. The 

perpendicular component ofthe magnetic field is = n cos wt 

AccordingtoFaraday’sLawsofelectro-magneticInduction 




2


0 

m d
(I sin)22



 

 

 

 

 

 

 

 

 

 

Where 

eN
d

d
dt 

N (coswt) 
dt m 

N(mwcoswt) 

Nwmsinwt 

2fNmsinwt(Qw2f) 

2fNBmAsinwt e 

Em sin wt 

Em2fNBmA 

ffrequencyinHz 

BmMaximumfluxdensityinWb/mt2 

Nowwhenorwt=90 e = 

Em 

i.e. Em=2fNBmA 
 

RootMeanSquare(R.M.S)Value:

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 

when flowing through a given circuit for a given time produces same heat as 

produced by the alternating current when flowing through the same circuit for 

the same time. 

Sinuscdialalternatingcurrentis i 

= Im sin wt = Im sin 

The mean of squares of the instantaneous values of current over one 
complete cycle 

2
i2.d

(20) 
0 

Thesquarerootofthisvalueis 





2
i2.d

0 

2



m 

2 

I 2 

2 


I 

m 





2sin22

 
m  

4 2 0 

 
















I
r.m.s 

 


Im0.707I 

 

 

AverageValue:

Theaveragevalueofanalternatingcurrentisexpressedbythatsteady 

current (d.c.) which transfers across anycircuit the same charge as it transferred 

by that alternating current during the sae time. 
Theequationofthealternatingcurrentisi=Imsin

i.d
Iav(0) 

I
0.sin

d Im
π

sinθ.dθ 

0
   π

0 


I

mcos
I

mcos(cos00
π

 

0 π 


I

m10(1)
π 

Iav 

 

Iav 

2Im 



2MaximumCurrent 

π 
Hence,Iav0.637Im 

Theaveragevalueoveracompletecycleiszero 


Im 1cos2d

22

20 2 


I 

22

4
m 

1 cos2 d
0 

 m 
I 

22

20 
sin2.d

Im 

2 

Im 

22


4

sin4d
2 2 0 

Im 
22

4 20
0 

m 



Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of 

maximum value to r.m.s value. 

Ka
MaximumValue


Im

R.M.S.Value Im 

1.414 

 

Formfactor:-It isdefinedastheratioofr.m.svaluetoaveragevalue. 

Kf 
r.m.s.Value 

Average.Value 

Kf=1.11 


0.707Im
0.637Im 

1.414 

 

PhasororVectorRepresentationofAlternatingQuantity:

An alternating current or voltage, (quantity) in avector quantity which has 

magnitude as well as direction. Let the alternating value of current be 

represented by theequation e = Em Sin wt. The projection of Em on Y-axis at any 

instant gives the instantaneous value of alternating current. Since the 

instantaneous values are continuously changing, so they are represented by a 

rotating vector or phasor. A phasor is a vector rotating at a constant angular 

velocity 
Att1,e1Emsinwt1 

1 

Att2,e2Emsinwt2 
2 

AdditionoftwoalternatingCurrent:
Lete1Emsinwt 

1 

e2Emsin(wt) 
2 

The sum of two sine waves of thesame frequency 

is another sine wave of samefrequency but of a 

different maximum value and Phase. 

e

PhasorAlgebra:

Avectorquantitycanbeexpressedintermsof 

(i) RectangularorCartesianform 

(ii) Trigonometricform 

(iii) Exponentialform 

2 

2 

2 

e2e22eecos
1 2 12 



a2b2 

a

(iv) Polarform 

 

 
Ea jb 

E(cosjsin) 

Where a = Ecos is the active part 

b=Esinisthereactivepart 

tan1bPhaseangle 

 

j 

1(90o)j2

1(180o) 

j3j(270o) 

j41 (360o) 

(i) Rectangularfor:-  

Ea jb 

tanb/a 

(ii) Trigonometric form:- 
EE(cosjsin) 

(iii) Exponentialform:- 

EEej

(iv) Polarform:- 

EE/e (E ) 

AdditionorSubtration:- 

E1 a1 

jb1E2a2j

b2 

E1E2(a1a2)(b1b2 

1b1b2

tan aa 

1 2

Multiplication:- 

E1E2(a1ja1)(a1jb2) 

(a1a2b1b2)j(a1a2b1b2) 



2 2 

2 2 2 2 

1a1b2b1a2a 
abb 

12 

E1E11

E2E22 

12

E1E2E1E2 12 

Division:- 

E1E11E

2E22 

E1E11
E112 

E E2 E 
2 2 2 

 

A.C.throughPureResistance:

LettheresistanceofRohmisconnectedacrosstoA.Csupplyofappliedvoltage 

 

 

 

 

 

 

e Em sin wt (1) 

Let ‘I’ is the instantaneous current . 

Heree=iR 

i=e/R 

i=Emsinwt/R (2) 

By comparing equation (1) and equation (2) wegetalternatingvoltage and 

current ina pure resistive circuit are in phase 

Instantaneouspowerisgivenby P 

= ei 

=Emsinwt.Imsinwt 
=EmImsin2wt 


EmIm.2sin2wt 

2 


Em.

Im.(1cos2wt) 

 

P
Em.

Im
Em.

Im.cos2wt 

V I VmIm 

i.e.Pm.m

 ........................ 
cos2wt 

2 2 

2 2 

tan 



2 

2 2 
rms 

L 

 

WhereVm.
Imiscalledconstantpartofpower. 
2 

Vm.
Im.cos2wtiscalledfluctuatingpartofpower. 

 

Thefluctuatingpart 

waves. 

VmIm .cos2wt 
2 

offrequencydoublethatofvoltageandcurrent 

Hencepowerforthewholecycleis P
Vm.

ImV .I 
 

 

rms 

 

 

A.CthroughPureInductance:

Letinductanceof‘L’henryisconnectedacrosstheA.C.supply 
 

 

vVmsinwt (1) 

Accordingto Faraday’slawsofelectromagnetic inductancetheemfinduced across 

the inductance 

VL
di 

 

dt 
di

is therateofchangeofcurrent 
dt 

VsinwtL
di 

 

m dt 

di


Vmsinwt 

dt L 

di
Vmsinwt.dt L 

Integratingbothsides, 

di
Vmsinwt.dt 

i
Vm

coswt

L w 

PVIwatts 

2 

2 



i
Vmcoswt 

V
wL 

i
mcoswt 

wVL  

i msin

wt 

wL 


Vmsinwt

2 [QX 2fLwL] 
    L 

XL  2
MaxiVmumvalueofiis
I  mwhen  isunity. 

m   sinwt 

XL  2

HencetheequationofcurrentbecomesiImsin(wt/2) 

So wefind thatif appliedvoltageisrep[resented by 

flowing in a purely inductive circuit is given by 

iImsin(wt/2) 

Herecurrentlagsvoltagebyanangle /2Radian. 

 

 

 

vVmsinwt,thencurrent 

 

Powerfactor = cos

= cos90

=0 

PowerConsumed=VIcos

= VI0 

=0 

Hence,thepowerconsumedbyapurelyInductivecircuitiszero. 

A.C.ThroughPureCapacitance:




Let a capacitanceof ‘C” faradis connected across theA.C. supply of applied 

voltage 

vVmsinwt (1) 

Let ‘q’=changeonplateswhenp.d.betweentwoplatesofcapacitoris‘v’ 

q =cv 

q=cVmsinwt 



L 

dq 
c 

d 
(Vsin wt) 

dt dt m 

i=cVmsinwt 

=wcVmcoswt 


Vm coswt 

1/wc 


Vmcoswt [QX

1


1 isknownascapacitive reactance 
Xc 

inohm.] 

c wc 2fc 

Imcoswt 

Imsin(wt/2) 

Herecurrentleadsthesupplyvoltagebyanangle/2radian. 

Powerfactor = cos

= cos 90 =0 

Power Consumed= VI cos 

= VI0 =0 

Thepowerconsumedbyapurecapacitivecircuitiszero. 

A.C.ThroughR-LSeriesCircuit:


TheresistanceofR-ohmand inductance ofL-henryareconnected inseries across 

the A.C. supply of applied voltage 
eEmsinwt (1) 
VVR jVL 

 V2V2tan1XL


R


 
X

 (IR)2(IX)2
tan1

 
L


I R2X2 L 1XR

 tan
 

L



VIZtan1XL 
R

 

R

R L 



2 2 

WhereZ

RjXLisknownasimpedanceofR-LseriesCircuit. 

I   
V 

Z


EmsinwtZ



IImsin(wt) 

Herecurrentlagsthesupplyvoltagebyanangle. 

PowerFactor:Itisthecosineoftheanglebetweenthevoltageandcurrent. 

OR 

Itistheratioofactivepowertoapparentpower. 

OR 

Itistheratioofresistancetoinpedence. 

Power:

v.i 

Vmsinwt.Imsin(wt) 
VmImsinwt.sin(wt) 


1
VI 

12
mm2sinwt.sin(wt) 

 VI 

2
mm[coscos2(wt)] 

Obviouslythepowerconsistsoftwoparts. 

(i) a constantpart
1

VI cos whichcontributestorealpower. 
 

 

2mm 

(ii) apulsatingcomponent 
1
VIcos(2wt) whichhasafrequencytwice 

 
 

2mm 

that of the voltage and current. It does not contribute to actualpower sinceits 

average value over a complete cycle is zero. 
Henceaveragepowerconsumed 


1
VIcos

2mm 


Vm.

Im
cos

VIcos

WhereV&Irepresentsther.m.svalue. 

A.C.ThroughR-CSeriesCircuit:

Theresistanceof‘R’-ohmandcapacitanceof‘C’faradisconnectedacrossthe 

A.C.supplyofappliedvoltage 

R2XL
2 



eEmsinwt 
 

VVR(jVC) 

IR(jIXC) 

I(RjXC) 

VIZ 

- ---------------------------- (1) 

 

WhereZRjXC

ZRjXC 

 R2X2 

tan1XC
C 

 

R

VIZ

I   
V 

Z


Emsin wt 

Z


Emsin(wt) 

 

 

Z
IImsin(wt) 

isknownasimpedanceofR-CseriesCircuit. 
 

 

 

 

 

Herecurrentleadsthesupplyvoltagebyanangle‘’. 

A.C.ThroughR-L-CSeriesCircuit:

Letaresistanceof‘R’-ohminductanceof‘L’henryandacapacitanceof‘C’ 

faradareconnectedacrosstheA.C.supplyinseriesofappliedvoltage 
 

eEmsinwt (1) 

R2X 2 
C 



R2(X X 
L C) 2 

  

eVRVLVC 

VRjVLjVC 

VRj(VLVC) 

IRj(IXLIXC) 
I[Rj(XLXC)] 

 

 

 

 

 

 
1X 

I tan



IZ

LXC

 

 R 

Where Z I isknownastheimpedanceofR-L-CSeries Circuit. 

IfXLXC,then theangleis+ve. If 

XLXC, then theangleis-ve. 

Impedanceisdefinedasthephasorsumofresistanceandnetreactance 
eIZ

I   
e 

Z
IZ 

Emsinwt 

Z
Imsin(wt) 

(1) If 

(2) If 

(3) If 

XLXC,thenP.fwillbelagging. 

XLXC,then,P.fwillbeleading. 

XLXC,then,thecircuitwillberesistiveone.Thep.f.becomesunity 

andtheresonanceoccurs. 

REASONANCE 

It is defined as the resonance in electrical circuit having passive or active 

elements represents a particular state when the current and the voltage in the 

circuitis maximumand minimumwithrespecttothe magnitude ofexcitationat a 

particular frequencyand the impedances beingeither minimumor maximum at 

unity power factor 

Resonanceareclassifiedintotwotypes. 

(1) SeriesResonance 

(2) ParallelResonance 

(1) SeriesResonance:- Letaresistanceof‘R’ohm,inductanceof‘L’ 

henryandcapacitanceof‘C’faradareconnectedinseriesacrossA.C.supply 

R2(X X 
L C )2 



LC 

LC 

o 

. 

 

eEm sinwt 

Theimpedanceofthecircuit 

ZRj(XLXC)] 

Z

Theconditionofseriesresonance: 

Theresonancewilloccurwhenthereactive partofthe linecurrent iszero The p.f. 

becomes unity. 

The net reactance will be zero. 

The current becomes maximum. 

Atresonancenetreactanceiszero 

XLXC0 

XLXC 

WL 
1 

o WoC 

W2LC1 

W2
1 

o LC 

W 
1 

o  

 

2fo
1  

fo
 1  

2

Resonant frequency(f)
11  

o 2

ImpedanceatResonance 

Z0 = R 
CurrentatResonance 

I
V 

o R 
Powerfactoratresonance 

p.f.
R


R
1 QZR

o 

Zo R 

R2(X X 
L C) 2 

LC 

LC 



0 

4L 

ResonanceCurve:- 
 

At lowfrequencythe Xc is greater and the circuit behaves leading and 

at high frequency the XL becomes high and the circuitbehaves lagging 

circuit. 
Iftheresistancewillbelowthecurvewillbestiff(peak). 

 If the resistance will go oh increasing the current goes on decreasing and 

the curve become flat. 

BandWidth:

Atpoint‘A’ thepower loss is I 2R. 

The frequencyis f0whichisatresonance. 
I2R 

Atpoint‘B’thepowerlossis 0 . 
2 

Thepowerlossis 50%ofthepowerlossatpoint 

‘A”/ 

 

 

 

 

Hencethefrequencies 

correspondingto point‘B’ is knownas halfpowerfrequencies f1& f2. 

f1=Lowerhalfpowerfrequency 

f1f0

R 

F2= Upperhalfpowerfrequency 
R 

f2f0 4L 

Bandwidth(B.W.)isdefinedasthedifferencebetweenupperhalfpower frequency 
ad lower half power frequency. 

B.W.=f2f1
R 

2L 



L2I2 

 

Qfactor=
1. 

cos

Q-factor=
W0L 

R 

Selectivity:
SelectivityisdefinedastheratioofBandwidthtoresonantfrequency 

Selectivity=
B.W. 

f0 


R 

2L 

Selectivity 
R 

 

2foL 

QualityFactor(Q-factor):

It is defined as the ratio of 2 Maximum energy stored to energy dissipatedper 

cycle 

 

Q-factor = 

 


2
1
LI2 

 

2 0 
 

 

I2RT 

 

I2RT 


L.2I2 

I2RT 


L.2I2 

I2RT 


2L. 

RT 
1. 

Q0f 


 I 



Qualityfactorisdefinedasthereciprocalofpowerfactor. 

Itis thereciprocalofselectivity. 

Q-factorOrMagnificationfactor 
VoltageacrossInductor. 

Voltage 


I0XL 

I0R 


XL 

R 

acrossresistor 


2f0L

W0LR

 R 
 

 

Q-factorfactor 
VoltageacrossCapacotor. 

Voltageacrossresistor 


I0Xc 

I0R 

Qualityfactor=  
2f L. 0 

R 



Q-factor
1 

W0CR 


XC 

R 

 
1 

2f0C 

 

 

 
1 

2f0CR 
 

 

Q2
W0L



R 

Q2 
1 

 

R2C 

1 
 

 

W0CR 

 

 

GraphicalMethod:

(1) ResistanceisindependentoffrequencyItrepresentsastraightline. 

(2) InductiveReactance XL=2fL 

It is directly proportional to frequency. As the frequency increases , 

XLincreases 
(3) 

Capacitive ReactanceXC=
1  

2fC 
 

It isinverselyproportionalto frequency. As the frequency increases, 

XCdecreases. 

Whenfrequencyincreases,XLincreasesandXCdecreasesfromthe 

higher value. 

Q
1 

L 

R C 

Q
1 

R2C 



L 

L 

 

Atacertainfrequency.XL= XC 

ThatparticularfrequencyisknownasResonantfrequency. 

Variationofcircuitparameterinseriesresonance: 

(2) Parallel Resonance :- Resonance will occur when the reactive part ofthe 

line current is zero. 

 

 

At resonance, 

IC–ILsin=0 

ICIL sin


V




XC 


V


XC 

V 

 

V 

R2X2 

sin



 XL 


1
 XL 

XC R2X2 

R2X2X.X 

Z2 
L L C 

X .X WL
L C 0 

1 
 

W0C 

R2X2 
L 

R2X2 
L 



R2X2 
L 

R2X2 
L 

L 

Z2
L 

C 

R2X2
L 

L C L 
R2(2fL)2  

0 CL 
R242f

2L2
0 C 

42f
2L2

L
R2 

0 

f2



1 C 


L 
R2


 

0 42f02
L2 C 

f0

f0=Resonantfrequencyinparallelcircuit. 

CurrentatResonance=ILcos

 
V 

. 
R 

 

  
VR 

R2X2 


VR 
Z2 


VR 

L/C 

 

 

 
V 

L/RC 

  V

 Dynamic 
 Impedence 

L/RCDynamicImpedanceofthecircuit. 

or, dynamic impedances is defined as the impedance atresonance frequency in 

parallel circuit. 

ParallelCircuit:



Theparallelresonancecondition: 

1 

2

1 

LC 


R 
2 

 

L2 



X 

1 

2 


2 



L 

Whenthereactivepartofthelinecurrentiszero. The 

net reactance is zero. 

Thelinecurrentwillbeminimum. 

The power factor will be unity 

Impedance Z1R1jXL 

Z2R2 jXC 

AdmittanceY1 
1
 

1 

Z1 R1jXL 


  (R1jX L)

 (R1jX L)(R1jX 
L) 

R1jXL 

R2X2 
1 L 

Y
 R1 j 

XL 

1 R2X2 R2X2 
1 L 1 L 

AdmittanceY
1
 

1 

Z2 R1 jXC 


 (R2jXC)  

(R21jXC)(R2

R2jXL 

R2X2 
2 C 

jXC) 

Y2 R2
R2 

2j 
XC 

R2X2 

TotalAdmittanceA
2
dmit

C
tance21C 1 1 

ZZ 

Z
 1 2 

YY1Y2 

 R1 j 
XL  R2 j 

XC 

YR2X2 R2X2 R2
2XC2 R2X2 

1 L 1 L 2 C 

 2R1 2 2R2 2  XL XC 

YR 
1 

X R X jR2X2R2X2

L 2 C  1 L 2 C 

AtResonance, 

 XL  
XC 0 

R2X2 R2X2 

R2 
XL

L 
 X 

2 XC
C 

2 
R

2
X

2 
1 L 2 C 

XR2X2XR2X2
L 2 C 

2fLR2
C 1 

1  1 R242f2L2
2 

42f2C2 2fC 1 



2fLR2 
  L  

2fC2 


R2 

 1 
2fC 

 

2fL2 
 

 

C 







1 L 

2L C 

2 

22 

1 

f
1 

2

L R2 

LC L  2 
1 


1 

2 L2CL12 

L R 
2 

f
1 

2 LC 

1

 1  

2LC 

f
1 

2

L 

L2C 

 L R1
2 2fL2

2fLR2 
2fC22fC C 2 

 
1 L

R22fL
L
R2

2   1 
C 

2
fCC L  

42f2LCC R1
2 

LCR2 
L
R2LCR12 

C 2 
2 

42f2
1 

LC 
LCR1

LCR 
2 

 
2

1 LCR2

f2  1

4LCLCR2

f



f



fiscalledResonant frequency. 

IfR20 

Then f




1 LCR1
2 

2 L2C 

1 LCR2 
 1 

2L C 

 R2 
 

IfR1 andR2=0,then 
 

ComparisonofSeriesandParallelResonantCircuit:

Item Seriesckt(R-L-C) Parallelckt(R–Land C) 

1 LCR2

2LC LCR 
 1

 2
2 

1 

2


 1 
2 

LCR2 

L CLCR 2 
2

2 



 ImpedanceatResonance Minimum Maximum 

 CurrentatResonance V 

Maximum=R 

 V  

Minimum=(L/CR) 

 EffectiveImpedance R L 

CR 

 P.f.atResonance Unity Unity 

 ResonantFrequency  1  

2LC 

2 

1 1


R
  

2 LC L2 

 ItMagnifies Voltage Current 

 Magnificationfactor WL 

R 

WL 

R 









Parallelcircuit:



Z1R1jXL R1
2XL

21 

Z2R1jXC R22XC
22 

I 
V 


V


1 

I
1 Z

 

Z 1 1 1 

V 
1 1 1 

Where VY 
1 

1 

HereY1Admittanceofthecircuit 

Admittanceisdefinedasthereciprocalofimpedence. 

Z 



I I 2 
1 2 

2 

IVY 
v 

 

1 1 

I 
V 

R1jXL 


V
1VY2I22 

 

 
 

2 Z221 Z 
 

 

I 2I1I2cos(12) 

II11I22 

 

The resultant current “I” is the vector sum ofthe branchcurrents I1& I2 

canbe found by usingparallelogram low of vectors or resolving I2into their X 

2 



2 

–andY-components(oractiveandreactivecomponentsrespectively)andthen by 

combining these components. 

 

SumofactivecomponentsofI1andI2=I1cos 1+ I2cos2 

SumofthereactivecomponentsofI1andI2=I2sin2-I1sin1 

 

EXP–01: 

A60Hzvoltageof230Veffectivevalueis impressedonaninductanceof 

0.265H 

(i)  Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero 

axis ofthe voltage wave be att= 0. 

(ii) Showthevoltageandcurrentonaphasordiagram. 

(iii) Findthemaximumenergystoredintheinductance. 

Solution:- 

Vmax 2V 2230V 

f=60Hz, W2f260377rad/s. 

xlwl3770.265100 . 

(i) Thetimeequationforvoltageis V(t)2302
sin377t. 

I
max
Vmax/xl230 /100.2.3 

90o(lag). 

QCurrentequationis. 

i(t)2.32sin(377t/ 2) 

or2.3 

(ii) Iti 
(iii) orE 

cos377t 

1 1 

LI
2

max 0.265(2.3 2)21.4J 
  

max 2 2 
 

 

 

 

 

 

 

 

 

Example-02: 

The potential difference measured across a coil is 4.5 v, when it carries a 

direct current of9 A. The same coilwhencarries analternatingcurrent of 9Aat 25 

Hz, the potential difference is 24 v. Find the power and the power factor when it 

is supplied by 50 v, 50 Hz supply. 

Solution: 

LetRbethed.c.resistanceandLbeinductanceofthecoil. 

RV/I4.5/90.5

2 

3 



R2 222066L2) 

Z2R2 

2 2 

Witha.c.currentof25Hz,z=V/1. 
24
2.66

9 

xl 

 2.62

xl225L 

xl0.0167

At50Hz 

xl2.6225.24

Z 0.525.242 

5.06

I=50/5.26 =9.5A 

P=I2/R=9.520.5=45watt. 

Example–03: 

A50-fcapacitorisconnectedacrossa230-v,50–Hzsupply. Calculate 

(a) Thereactanceofferedbythecapacitor. 

(b) Themaximumcurrentand 

(c) Ther.m.svalueofthecurrentdrawnbythecapacitor. 
Solution: 

(a) xl 
1
 

wc 

 
1 






2πfe 

1 

25050106 
63.6

(c) Since230vrepresentsther.m.svalue 

QIrms230/xl230/63.63.62A 

(b) ImIr.m.s 3.62 5.11A 

Example–04: 

In a particular R –Lseries circuit avoltageof10v at 50Hzproduces a 

current of700 mA. What are the values ofR and L inthe circuit ? 

Solution: 

(i) Z



V1z 

10700103 

10/700103100/7 

R298696L210000/49 -------------------------- (I) 

(ii) InthesecondcaseZ

Q10500103 20 

20 

(R298696L2) 

2.6620.52 

R2(250L)2 

R298696L2 

(R298696L2) 

R2 (2 75L)2 

R2222066L2) 



R2222066L2400 (II) 

SubtractingEa.(I)from(ii),weget, 

222066L298696L2400(10000/49) 

123370L2196 

L2



L

196 
 

 

123370 
196 

0.0398H 

123370 

 

 

=40 mH. 

SubstitutingthisvalueofLinequation(ii)weget 

R6.9. 

R2222066L2(0.398)2400 

 

Example–04: 

A 20 resistor is connected in series with an inductor, a capacitor and an 

ammeter across a 25 –v, variable frequency supply. When the frequency is 

400Hz, the current is at its Maxm value of 0.5 A and the potential difference 

across the capacitor is 150v. Calculate 

(a) Thecapacitanceofthecapacitor. 

(b) Theresistanceandinductanceoftheinductor. 

Solution: 

Sincecurrentismaximum,thecircuitisinresonance. 
xlVC/1150/0.5 300

(a) xl1/2fe3001/2400c 

c1.325106f1.325f. 

(b) xlxl150/0.5300 

2400 ×L=300 

L=0.49H 

(c) Atresonance, 

Circuitresistance=20+R 

V/Z=2510.5 

R=30

Exp.-05 

AnR-L-Cseries circuits consists ofa resistance of1000, an inductance 

of100MH an a capacitance ofwfor 10PK 

(ii) Thehalfpowerpoints. 

Solution: 
fo 1 

i) 


106 

  159KHz 
22101104 



LC L2 

1R 
2 

1 L 

R C 

101 

1011 

  


ii) 

  
1 


1000 

100 

 
iii) 

ffo
R 

1 4l 
159103 

1000 

4101 158.2KHz 

ffo
R
159103

 1000 
159.8KHz. 

2 

 

Exp.-06 

4l 4101 

Calculatetheimpedanceoftheparallel–turnedcircuitasshowninfig. 

14.52 at a frequency of 500 KHz and for band width of operation equal to 20 

KHz. The resistance of the coil is 5. 

Solution : 

At resonance, circuit impedance is L/CR. We have been given the value 

ofR but that of Land Chas to befoundfromthegiven thevalue ofR but that of 

Land C has to be found fromthe given data. 

BW
R

,20103
 5

orl39H 

2l 2l 

fo 
1
 1 

2  2

C=2.610-9 

Z=L/CR= 3910-6/2.610-95 

=3103

Example:Acoilof resistance20Ω andinductanceof200µH isinparallelwith a 

variable capacitor. This combination is series with a resistor of 8000Ω.The 

voltage ofthe supply is 200V at a frequencyof106HZ.Calculate 

i) thevalueofCtogiveresonance 

ii) theQofthecoil 

iii) thecurrentineachbranchofthecircuitatresonance 

Solution: 

 

XL=2πfL=2π*106*200*10-6=1256Ω 

Thecoilisnegligibleresistanceincomparisontoreactance. 

1 
52 

39106C (39106)2 




 

ii) Q= =62.8 

iii) dynamicimpedanceofthecircuitZ=L/CR=200*10-6/(125*10- 
12*20)=80000Ω 
total Z=80000+8000=88000Ω 
I=200/88000=2.27mA 

p.d across tuned circuit=2.27*10-3*80000=181.6V 

currentthroughinductivebranch=

current through capacitor branch=  

=181.6*2π*106*125*10-12=142.7mA 

 
 

 

 

POLY-PHASECIRCUIT 
Three-phasecircuitsconsistsofthreewindings i.e.R.Y.B 

 

 

 

 

EREmsinwtEm0 

EYEmsin(wt120)Em120 

EBEmsin(wt240)Em240 Em120 



3-Circuitaredividedintotwotypes 

 StarConnection 

 DeltaConnection 

 

 

StarConnection:


Ifthree similar ends connected at one point, then it is knownas star connected 

system. 

The commonpoint is knownas neutralpoint and the wire taken fromthe 

neutral point is known as Neutral wire. 

PhaseVoltage:

ItisthepotentialdifferencebetweenphaseandNeutral. 

LineVoltage:

ItisItisthepotentialdifferencebetweentwophases. 

RelationBetweenPhaseVoltageandLineVoltage:





2 

3VPh 

V 

LL 




  

LineVolatageVRY VRNVYNVL





  3VPh 

VL 3VPh 

SinceinabalancedB–phasecircuitVRN=VYN= VBN=Vph 

RelationBetweenLinecurrentandPhaseCurrent:- 

In case of star connection system theleadsare connectedin series with 

each phase 

Hencethelinecurrentisequaltophasecurrent IL = 

Iph 

Powerin3-Phasecircuit:- 

PVphIphcos per phase 

3VphIphcosfor3phase 

3LI 

3 

 
cos (Q V 

L L 

 

 3V
ph 

P 3VIcos

Summariesinstarconnection: 

i) Thelinevoltagesare apartfromeachother. 

ii) Linevoltagesare aheadoftheirrespectivephasevoltage. 

iii) Theanglebetweenlinecurrentsandthecorrespondingline voltageis30+φ 

iv) Thecurrentinlineandphasearesame. 

 

DeltaConnection:- 

V V 
RN YN 

2VVCos60o 
RNYN 

V 
2 

PhV2
ph2VV 

phph 


1 

2 



3I 
2 

ph 

 

Ifthe dissimilar ends ofthe closed meshthen it is called a Delta Connected 

system 

RelationBetweenLineCurrentandPhaseCurrent:- 
 

Line Currentinwire–1=i
Ri Y 

 

LineCurrentinwire-2=i
YiB 

 

LineCurrentinwire–3=i
BiR 

 

ILIRIY 

 









 ,IL


RelationBetweenLineVoltage&PhaseVoltage:
VLVph 

Power= 3VLILcos

Summariesindelta: 

I I 2IRIYcos60 2 2 0 

R Y 

I 2I 22I 
ph ph phph 

I 
1 

2 

3Iph 

2 



i) Linecurrentsare apartfromeachother. 

ii) Linecurrentsare behindtherespectivephasecurrent. 
iii) Theanglebetweenthelinecurrentsandcorrespondinglinevoltages is30+φ 
MeasurementofPower:

(1) Bysinglewatt-meter method 

(2) ByTwo-wattmeterMethod 

(3) ByThree-wattmeterMethod 

MeasurementofpowerByTwoWattMeterMethod:- 

 

PhasorDiagram:- 

LetVR,VY,VB arether.m.svalueof 3- voltagesandIR,IY,IB arether.m.s. values of 

the currents respectively. 

CurrentinR-phasewhichflowsthroughthe currentcoilofwatt-meter W1 

= IR 

And W2=IY 
  

PotentialdifferenceacrossthevoltagecoilofW1VRBVRVB 

  

AndW2VYBVY VB 

Assumingtheloadisinductivetypewatt-meterW1reads. 

W1VRBIRcos(30) 

W1VL ILcos(30 ) (1) 

Wattmeter W2 reads 

W2VYBIYcos(30) 

W2VLILcos(30) (2) 

W1W2VLILcos(30)VLILcos(30) 

VLIL[cos(30)VLILcos(30)] 

VLIL(2cos30ocos) 

VLIL(23cos) 
2 

W1W2 3VLILcos (3) 

W1W2VLIL[cos(30)cos(30) 



3 

3 

VI(2sin30osin) 
LL 

1 
VLIL

(2

2 

W1W2VLILsin

W1W2VLILsin 

sin) 

W1W2 

1
tan



tan

1 

tan 

3VLILcos



3W1W2
WW 
 1 2
3W1W2

WW 

 1 2

Variationinwattmeterreadingwithrespecttop.f: 

 

Pf W1reading W2reading 

φ=0,cosφ=1 +veequal +veequal 

φ=60,cosφ=0.5 0 +ve 

φ=90,cosφ=0 -ve,equal +veequal 

 

Exp.:01 

A balanced star – connected load of (8+56). Per phase is connected to a 

balanced 3-phase 100-v supply. Find the cone current power factor, power and 

total volt-amperes. 

Solution : 

Zph

Vph400/ 

10

23/v 

IphVph/Zph231/1023.1A 

i) IL=Zph=23.1A 

ii) P.f.= cos= Rph/zph=8/10=0.8(lag) 

iii) PowerP  3VLILcos

 40023.10.8 

=12,800watt. 

iv) Totalvoltamperes=3VLIL 

=3 40023.1 

=16,000VA. 

8262 

3 



 

 

Exp.-02 

Phase voltage and current ofa star-connected inductive load is 150V and 

25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire 

and power is measured usingtwo watt meters, find the readings ofwatt meters. 

Solution : 

Vph = 150V 

VL=3150 

Iph = IL= 25A 

Totalpower=3VLILcos= 31503250.707= 7954 watt. 

W1+W2=7954.00, cos=0.707 

=cos-1(0.707)=45,tan45=1 Now 

for a lagging power factor, 

tan 3(W1W2)/(W1W2) 

1 3
(W1W2)

 
7954 



(W1W2)4592w 

From(i)and(ii)above, weget 

W1=6273w W2=1681w 



TRANSIENTS 

Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the other 
state.Thetimetakentochangefromaninitialsteadystatetothefinalsteadystateisknown as the 
transient period.This response is known as transient response or transients.The response of 
the network after it attains a final steady value is independent of time and is 
calledthesteady‐stateresponse.Thecompleteresponseofthenetworkisdeterminedwith the 
helpofa differential equation. 

STEADYSTATEANDTRANSIENT RESPONSE 

In a network containing energy storage elements, with change in excitation, the currents 
and voltages in the circuit change from one state to other state. The behaviour of the 
voltageorcurrentwhenit ischangedfrom onestatetoanotheriscalledthetransientstate. The 
time taken for the circuit to change from one steady state to another steady state is called 
the transient time. The application of KVL and KCL to circuits containing energy 
storageelements results indifferential,ratherthanalgebraicequations. whenweconsidera 
circuit containing storage elements which are independent of the sources, the response 
depends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to as the transient response. When we consider a source acting 
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 
parts; the forced response and the transient response. When we consider a differential 
equation,the complete solutionconsists oftwoparts:the complementary function and the 
particularsolution.Thecomplementaryfunctiondiesoutaftershortinterval,andis referred to as 
the transient response or source free response. The particular solution is the steady state 
response, or the forced response. The first step in finding the complete solution of a circuit 
is to form a differential equation forthe circuit. By obtaining the differential 
equation,severalmethods can be used to find out the complete solution. 

DCRESPONSEOFANR‐LCIRCUIT 

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the 
circuit is initially uncharged and is in series with the resistor.When the switch S is closed 
,we can find the complete solution forthe current.Application of kirchoff’s voltage law 
tothe circuit results in the following differential equation. 

 



Figure 1.1 

V= Ri + L  ……………………………………………………………..1.1 

Or + i= ................................................................ 1.2 

Intheaboveequation ,the currentI isthe solutionto be foundandV is theapplied constant 

voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchSisclosed.Theaboveequation is a 

linear differential equation of first order.comparing it with a non‐homogenious differential 

equation 

+ P x = K ........................................................................ 1.3 

whosesolutionis 

X= dt+c...............................................................1.4 

Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequationas 

i=c dt 

Hence, i= c +..................................................... 1.5 

 
To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig.1.1,theswitchsisclosedatt=0.att=0‐,i.e.justbeforeclosingtheswitchs,thecurrentinthe 
inductoriszero.Sincetheinductordoesnot allow sudden changesincurrents,at t=o+just after the 
switch is closed,the current remains zero. 

Thusatt=0,i=0 

Substitutingtheaboveconditioninequationc,wehave 0 = 

c +  

Substitutingthevalueofcinequationc,weget 

i = ‐  

 

i= (1‐ ) 

 

i = (1‐ )(where  

i= (1‐ )( where ) ..................................................................... 1.6 



 

 
Figure1.2 

 

Equationdconsistsoftwoparts,thesteadystatepart V/R)andthetransientpart . 

 
WhenswitchSisclosed,theresponsereaches asteadystatevalueafteratimeintervalas shown in 
figure 1.2. 

Herethetransition period isdefined asthetimetaken for thecurrent toreach itsfinal or 
stedy state value from its initial value.In the transient part of the solution, the 
quantityL/Risimportantindescribing thecurvesinceL/Risthetimeperiod required for 
the current to reach its initial value of zero to the final value  V/R. The time 

constant of a function isthetimeat whichtheexponent ofeisunity,wheree is the 
base of the natural logarithms.The term L/R is called the time constant and is denoted 
by τ . 

So,τ= sec 

 
Hence,thetransientpartofthesolutionis 

i =  =  

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitialvalue. 

 

i(τ)=‐  =‐ =‐0.368 

Similarly, 

i(2τ) =‐ 

  

 
=‐0.135 

i(3τ) =‐ 
 

=‐0.0498  

i(5τ) =‐ 
 

=‐0.0067  

 
After5TCthetransientpartreachesmorethan99percentofitsfinalvalue. 



= (1‐ 

InfigureAwecanfindoutthevoltagesandpowersacrosseachelementbyusingthecurrent. 

Voltageacrosstheresistoris 

=R i =R (1‐ ) 

 

Hence, =V (1‐ ) 

 

Similarly,thevoltageacrosstheinductanceis 

= L = L =V  

TheresponsesareshowninFigure1.3. 
 

 

 
Figure1.3 

 

 
Powerintheresistoris 

= i=V(1‐ ) ) +

 

Powerintheinductoris 

= i =V 

= ( ‐ ) 

 
Theresponsesareshowninfigure1.4. 



 

 
Figure1.4 

 
 
 

 
Problem:1.1 

 

Figure 1.5 

AseriesR‐LcircuitwithR=30Ωand L=15Hhas a constant voltageV=50Vapplied at t=0as shown in 

Fig. 1.5.determinethe current i,thevoltageacross resistor and across inductor. 

Solution: 

ByapplyingKirchoff’svoltageLaw,weget 

15 +30i =60 

 

+2i=4 

 
Thegeneralsolutionforalineardifferentialequationis i=c

+ dt 

where P=2,K=4 

puttingthevaluesi=c

+ dt 

i=c +2 



Att=0,theswitchs isclosed. 

Sincetheinductorneverallowssuddenchangeincurrents.Att= thecurrent inthecircuit is zero. 

Therefore at t= , i =0 

0=c +2 

 
c=‐ 2 

 
Substitutingthevalueofcinthecurrentequation,wehave 

i=2(1‐ )A 

 
voltageacrossresistor( )=iR=2(1‐ )x30=60(1‐ )v 

 

voltageacrossinductor( )=L =15 2(1‐ ) =30 v=  

 
 
 

 
DCRESPONSEOFANR‐CCIRCUIT 

Consideracircuitconsistingofaresistanceand capacitanceasshowninfigure.Thecapacitorinthe 
circuitisinitially unchargedandisinserieswiththeresistor.WhentheswitchSisclosedatt=0 ,we can find 
the complete solution for the current.Application of kirchoff’s voltage law to the circuit results in 
the following differential equation. 

 

Figure1.6 
 

V = Ri +  ……………………………………………………………..1.7 

Bydifferentiatingtheaboveequation,weget 

 

0=R +  i ……………………………………………………1.8 

Or 

+ 
 

i=0 

  

 
……………………………………………………1.9 



Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular 
solutionfor the aboveequationis zero. The solutionforthis type of differential equationis 

i=c …………………………………..1.10 
 

 
To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig.theswitchsisclosedatt=0.Sincethecapacitor doesnot allowsuddenchanges involtage,it willact 
as a short circuit at t=o+ just after theswitch is closed. 

Sothecurrentinthecircuitatt=0+is Thus at t 

= 0,the current i =
 

Substitutingtheaboveconditioninequationc,wehave = 

c 

Substitutingthevalueofcinequationc,weget 

i= ………………………………………………1.11 

 

Figure1.7 
 

 
WhenswitchSisclosed,theresponsedecaysasshowninfigurre. 

Theterm RCis called the time constant and is denoted by τ . 

So,τ=RC sec 

After5TCthecurvereaches99percentofitsfinalvalue. 

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage 

across the resistor is 



=R i =R  

 

Hence, =V  

Similarly,voltageacrossthecapacitoris 

=  

=  
 

=‐ +c 

 

=‐V +c 

Att=0,voltageacrosscapacitoriszero 

So, c = V 

And 

= V  
 

TheresponsesareshowninFigure1.8. 

 

Figure1.8 

Power in the resistor is 

= i =V  

 

=  

Powerinthecapacitoris 

= i =V (1‐ 



= ( ‐ ) 

 
Theresponsesareshowninfigure1.9. 

 

Figure1.9 

Problem:1.2 

AseriesR‐CcircuitwithR =10Ωand C=0.1Fhasaconstant voltageV=20Vapplied at t=0as shown 

inFig. determinethecurrent i,the voltage across resistor and across capacitor. 
 

 

Figure1.10 

Solution: 

ByapplyingKirchoff’svoltageLaw,weget 10i 

+ =20 

Differentiatingw.r.t.tweget 

10 + =0 

 

+i=0 

 
Thesolutionforaboveequationis 



i=c  

 
Att=0,theswitchsis closed. 

Sincethecapacitorneverallowssuddenchangeinvoltages.Att= thecurrentinthecircuitis i = 

V/R=20/10 =2 A 

.Thereforeatt=0,i=2A 

thecurrent equation isi=2  

 

voltageacrossresistor( )=iR=2 x10=20 v 
 

 

voltageacrosscapacitor( ) =V =20(1‐ )V 
 
 
 
 
 

DCRESPONSEOFANR‐L‐CCIRCUIT 

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The 

capacitorand inductor inthecircuitisinitiallyunchargedandareinserieswiththeresistor.When the 

switchSis closed at t=0 ,we canfind the complete solution for the current.Application of 

kirchoff’svoltagelawtothecircuitresultsinthefollowingdifferentialequation. 

 

Figure1.11 

V=Ri +L + ……………………………………………………………..1.12 

Bydifferentiatingtheaboveequation,weget 

0=R + i = ...................................................................... 1.13 

Or 

+ + i =0 ............................................................. 1.14 



The above equation c is a second order linear differential equation with only the complementary 
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationfor this type of 
differential equationis 

+ D+ =0 ..................................................................... 1.15 

Therootsofequation1.15are 

= ‐ 
 

 

Byassuming =‐ and =  

and =  

Here maybepositive,negativeorzero. 

Case I : >  

Then,therootsareRealandUnequalandgiveanoverdampedResponseasshowninfigure 1.12. 

Thesolution fortheabove equationis:i = +  
 

Figure1.12 

Case II :  

Then,therootsareComplexConjugate,andgiveanunder‐dampedResponseasshownin 

figure1.13. 

 



Figure1.13 

Thesolutionfortheaboveequationis:i= Case III 

: 

Then,therootsareEqualandgiveanCritically‐dampedResponseasshowninfigure1.14. 
 

Figure1.14 

Thesolutionfortheaboveequationis:i=

Problem : 1.3 

AseriesR‐L‐CcircuitwithR =20Ω,L= 0.05H and C=20μFhasaconstant voltageV=100V applied at 

t=0as shown in Fig.determinethe transient current i . 
 

Figure1.15 
 

 
Solution: 

ByapplyingKirchoff’svoltageLaw,weget 

100=30i 0.05  

Differentiatingw.r.t.tweget 
 

+20 + i=0 



+400 + i =0 

 
+400D+ i=0 

 
Therootsofequationare 

 

= ‐ 
 

 

=‐200

‐200+j979.8 

‐200‐j979.8 

 
Thereforethecurrent 

i =  
 

i = A 
 
 
 

 
Att=0,theswitchs isclosed. 

Sincetheinductorneverallowssuddenchangeincurrents.Att= thecurrent inthecircuit is zero. 

Therefore at t= , i =0 

i =0 =(1)  

 
=0and i= A 

 
Differentiatingw.r.t.tweget 

 

Att=0,thevoltageacrosstheinductoris100V 

=100or = 2000 

Att=0, =2000=  
 

= =2.04 

 
 

 
Thecurrentequationis 



i= 

 
 

 
ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORMTECHNIQUE 

The Laplace transform is a powerful Analytical Technique that is widely used to study the 

behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedomain 

function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation 

converts thefrequency domain function F(s) back toatime domain function f(t). 

L{f(t)}=F(s)= f(t)dt................................................................................................................LT1 

 

{ F(s)} =f(t) = ds .............................................................................................LT2 

 
DCRESPONSEOFANR‐LCIRCUIT(LTMethod) 

LetusdeterminethesolutioniofthefirstorderdifferentialequationgivenbyequationAwhich is for 

theDC response of aR‐L Circuit under thezeroinitial conditioni.e.current is zero,i=0 at t= and 

hencei=0at t= in the circuit in figure A by the property of Inductance not allowing thecurrent 

tochange as switch is closed at t=0. 

 

 
FigureLT1.1 

V=Ri+L ……………………………………………………………..LT1.1 

TakingtheLaplaceTransformofbothesidesweget, 

=R I(s) +L [ s I(s) –I(0) ] .................................................................... LT1.2 

 

=R I(s) + L [ s I(s) ] (I(0)=0:zeroinitialcurrent) 

= I(s)[R +L s] 

I(s)= ................................................................................. LT1.3 



TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=  

i(t)= (Dividingthenumeratorand denominatorbyL) putting

we get 

i(t) =  = ( } 

 

i(t) = ( }( again puttingbackthevalue of  

 

i(t)= ( }= (1‐ )= (1‐ ) (where  

 

i(t)= (1‐ ) (where ) ............................................................................ LT1.4 

Itcanbeobservedthatsolutionfori(t)asobtainedbyLaplaceTransformtechniqueissameas that 
obtained by standard differential method . 

DCRESPONSEOFANR‐C CIRCUIT(L.T.Method) 

Similarly, 

Letusdeterminethesolutioniofthefirstorderdifferentialequationgivenby equationAwhich is for 
the DC response of a R‐C Circuit under the zero initial condition i.e. voltage across 
capacitoriszero, =0at t= andhence =0at t= inthecircuit in figureA bytheproperty 

ofcapacitancenotallowingthevoltageacrossittochangeasswitchisclosedatt=0. 

 

FigureLT1.2 

V=Ri+ ……………………………………………………………..LT1.5 

TakingtheLaplaceTransformofbothsidesweget, 

=R I(s) + [ +I (0) ] ......................................................... LT1.6 

=R I(s) + [ ] (I(0)=0:zeroinitialcharge) 

=I(s)[R+ ]=I(s)[ ] 



) 

I(s)= [ ]= ………………………………..LT1.7 

TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=  

i(t)= (DividingthenumeratoranddenominatorbyRC) 

putting weget 

i(t) = =  

i(t) = (puttingback thevalueof  

 

i(t)= (where ....................................................................... LT1.8 

i(t)= (where RC) 

 
Itcanbeobservedthatsolutionfori(t)asobtainedbyLaplaceTransformtechniqueinqis same as 
that obtained by standard differential method in d. 

DCRESPONSEOFANR‐L‐CCIRCUIT(L.T.Method) 

 

FigureLT1.3 

Similarly, 

LetusdeterminethesolutioniofthefirstorderdifferentialequationgivenbyequationAwhich is 
fortheDC responseofaR‐L‐C Circuit under thezeroinitialconditioni.e.theswitchs is closed at 
t=0.at t=0‐,i.e. just before closing the switch s , the current in the inductor is zero. Since the 
inductor does not allow sudden changes in currents,at t=o+ just after the switch is closed,the 
current remains zero.alsothevoltageacrosscapacitoriszeroi.e. =0at t= andhence =0 

att= inthecircuitinfigurebythepropertyofcapacitancenotallowingthevoltageacrossit 

tosuddenly change as switch is closed at t=0. 

 
V=Ri +L ............................................................ LT1.9 

 
TakingtheLaplaceTransformofbothsidesweget, 



=R I(s) ++L [sI(s) –I(0) ]+ [ +I (0) ] ........................................................... LT1.10 

 

=R I(s) + [ ] ( &I(0)=0:zeroinitial 

charge) 

=I(s)[R +L ] = I(s)[ ] 

 

I(s)= [ ]=  ………………………………..LT1.11 

TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=
 

i(t)= (DividingthenumeratoranddenominatorbyLC) 

 
i(t) = 

putting = weget 

i(t) =  
Thedenominator polynomialbecomes=  

where, = =

where, = ; = and =
 

BypartialFractionexpansion,ofI(s) , 

I(s) = +  

A= s= 

 

= 
 

B= s= 
 

= =‐ 
 

I(s)= (  

TakingtheInverseLaplaceTransform 



i(t)= +  

Where and areconstantstobedeterminedand and arentherootsofthe equation. 

Nowdependinguponthevaluesof and ,wehavethreecases oftheresponse. CASEI 

:When theroots areReal and Unequal, it gives an over‐damped response. 

or ;Inthiscase,thesolutionisgivenby i(t) 

= + ) ..................................................... LT1.12 

or i(t) = +  fort 0 

CASEII:WhentherootsareRealand Equal,itgivesanCritically‐damped response. 

 =  or ;Inthiscase,thesolutionisgivenby or 

i(t)= ( + ) fort 0 ..................................................... LT1.13 

CASEIII:WhentherootsareComplexConjugate,itgivesanunder‐dampedresponse. 

 

or ;Inthiscase,thesolutionisgivenby i(t) = 

+  fort 0 

where, =  

 

Let  =  = j  where j= and =  
 

 
Hence, i(t)= + ) 

 

 

i(t) =
 

 

i(t) =  
 

i(t)=  ………………………………..LT1.14 
 

 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,xxxxxxxxxxxxxxxxx,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 



TWOPORTNETWORKS 
 

Generally, any network may be represented schematically by a rectangular box. A network may be 
used for representing either Source or Load , or for a variety of purposes. A pair of terminals at 
whichasignalmayenterorleaveanetworkiscalledaport.Aportisdefinedasanypairofterminals into which 
energy is withdrawn ,or where the network variables may be measured .One such network having 
only one pair of terminals (1‐1’)is shown figure 1.1. 

 

 
Figure 1.1 

A two‐portnetwork is simply a network a network inside a black box, and the network has only two 
pairsofaccessibleterminals;usuallyoneonepairsrepresentstheinputand theotherrepresentsthe 
output. Such a building block is very common in electronic systems, communication system, 
transmissionanddistributionsystem. fig 1.1shows a two‐portnetwork,or two terminal pair 
network,in which the four terminals have been paired into ports 1‐1’ and 2‐2’.The terminals 1‐1’ 
togetherconstituteaport.Similarly,theterminals2‐2’constituteanotherport.Twoportscontaining 
nosourcesin theirbranchesarecalledpassiveports; amongthemarepowertransmissionlinesand 
transformers. Two ports containing source in their branches are called active ports. A voltage and 
currentassigned to eachof the two ports. The voltageandcurrentat the inputterminals are and 

;where as and are entering into the network are , ,and , . Two of these are dependent 

variable, the other two are indepent variable. The number of possible combinations 
generatedbyfourvariable,takentwoattime,issix.Thus,therearesixpossiblesetsofequations describing a 

two‐port network. 

OPENCIRCUITIMPEDANCE(Z)PARAMETERS 

Agenerallineartwo‐portnetworkisshownbelowinfigure 1.2. 

Thezparametersof a two‐portnetworkfor thepositivedirectionof voltagesand currentsmaybe 

definedbyexpressingtheportvoltages and intermsofthecurrents and . Here and aretwo 

dependentvariables and and are twoindependentvariables. 



 
 

Figure1.2 

Thevoltageatport1‐1’istheresponseproducedbythetwocurrents and . thus 

………………………………………………. 1.1 

……………………………………………………….. 1.2 
 

arethenetworkfunctions,andarecalledimpedance(Z)parameters,andare 

defined by equations1.1 and 1.2 . 

TheseparametersalsocanberepresentedbyMatrices. We 

may write the matrix equation [V] = [Z][I] 

where V is the column matrix =[ ] 

Z is a square matrix = 

andwemaywrite inthecolumnmatrix==[ ] 

Thus,[ ]= [ ] 

TheindividualZparametersforagivennetworkcanbedefinedbysettingeachoftheportcurrents equal 

tozero. suppose port2‐2’ isleft open circuited, then =0. 

Thus = where 

similarly, 

=  

where 

. 



Supposeport1‐1’isleftopen circuited,then =0. 

Thus, =

where 

 
. 

similarly, 

=
 

where 

.Theequivalentcircuitofthetwo‐portnetworksgovernedbytheequations1.1and1.2,i.e.open 
circuitimpedanceparametersasshownbelowinfig1.3. 

 

Figure1.3 

 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

=  

or 
 

It is observed that all the parameters have the dimensions of impedance. Moreover, individual 

parametersarespecifiedonlywhenthecurrentinone ofthe portsiszero.Thiscorresponds toone of the 

ports being open circuited from which the Z parameters also derive the name open circuit 

impedance parameters. 

Problem1.1 



FindtheZparametersforthecircuitshowninFigure 1.4 
 

Figure1.4 

SolutionThecircuitintheproblemisaTnetwork.FromEqs16.1and16.2we have 

and

When port b‐b’ is open circuited, 

= 

 
Where  

 
) 

 
= 

 
Where 

 
Whenporta‐a’isopencircuited, =0 

 

=  

 

where ) 

 
) 

 

=  

 

where and  
 

Itcanbeobservedthat ,sothenetworkisabilateralnetworkwhichsatisfiesthe principle of 

reciprocity. 

SHORT‐CIRCUITADMITTANCE(Y)PARAMETERS 



 

 
Figure 1.5 

Ageneraltwo‐portnetworkwhichisconsideredinSection16.2isshown inFig16.5TheY 

parameters of a two‐ port for the positive directions of voltages and currents may be defined by 

expressingtheportcurrents and intermsofthevoltages and . Here , aredependent 

variablesand and areindependentvariables. maybeconsideredtobe thesuperpositionof 

twocomponents,one caused by andthe other by . 

Thus, 

………………………………………………………… 1.3 

Similarly,  …………………………………………………………1.4 
 

, and arethenetworknetworkfunctionsandarealsocalledtheadmittance 

(Y)parameters.TheyaredefinedbyEqs16.3and 16.4.Theseparameterscanberepresentedby matrices as 

follows 

[I]=[Y][V] 

whereI=[ ];Y=[ ]andV= [ ] Thus, 

[ ]=[ ][ ] 

 
TheindividualYparametersforagivennetworkcanbedefinedbysettingeachportvoltagetozero. 

Ifwelet bezerobyshortcircuitingport2‐2’then 
 

= =0 

 
isthedrivingpointadmittanceatport 1‐1’, withport2‐2’short circuited.Itisalsocalledthe 

shortcircuitinputadmittance. 

= =0 

isthetransferadmittanceatport1‐1’,withport2‐2’shortcircuited.Itisalsocalledtheshort 

circuitedforward transferadmittance. Ifwelet bezeroby shortcircuiting port1‐1’,then 



= =0 

 
isthetransferadmittanceatport2‐2’,withport1‐1’shortcircuited.Itisalsocalledtheshort circuited 

reverse transferadmittance. 

= =0 

 
istheshortcircuitdrivingpointadmittanceatport2‐2’,with port1‐1’shortcircuited.Itis also called the 

short circuited output admittance.The equivalent circuit of the network governed by equation 1.3 & 

1.4 is shown in figure 1.6. 

 

Figure1.6 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

 =  

or 

=  
 

It is observed that all the parameters have the dimensions of admittance. Moreover, individual 

parametersarespecifiedonlywhenthevoltageinoneofthe portsiszero. Thiscorresponds toone of the 

ports being short circuited from which the Y parameters also derive the name short circuit 

admittanceparameters. 

Problem1.2FindtheY‐parametersforthenetworkshowninFig.1.7 
 



Fig1.7 

Solution: 

= =0 

 
Whenb‐ isshortcircuited, =0andthenetworklooksasshowninFig. 1.8(a) 

 
 
 
 

 

Fig.1.8(a) 

=  

 
= 2  

 
So, =  

= =0= =  
 

= =0 

 

Whenb‐ isshortcircuited,‐ = = 

 

so, ‐ =  
 

and = =0= ‐  
 

similarly,whenporta‐ isshortcircuited, =0andthenetworklooksasshowninFig. 1.8(b) 



 

 
= =0 

= where istheequivalentimpedance asviewed fromb‐. =  
 

=  
 

= =0=  

 
= =0 

 

witha‐ isshortcircuited,‐ = Since , 

=5  

‐ = 5 = 

 

So, = =‐
 

 
Thedescribingequationsintermsoftyeadmittanceparametersare 

 

 

 

 

Transmission(ABCD)parameters 



 

 
Figure1.9 

Transmission parameters or ABCD parameters are widely used in transmission line theory and 

cascadednetworks.Indescribingthetransmissionparameters,theinputvariables and atport 1‐1’, 

usually called the sending end are expressed interms of the output variables and atport 

2‐2’, called, the receiving end.The transmission parameters provide a direct relationship between 

input and output.Transmission patameters are also called general circuit parameters, or chain 

nparameters. They are defined by 

………………………………………………………………………… 1.5 

…………………………………………………………………………..1.6 

Thenegativesignisusedwith ,andnotfortheparameterBandD.Both theportcurrents and‐ are 

directed to the right, i.e. with a negative signin equation a and b the currents at port 2‐2’ which 

leaves the portis designated as positive.The parameters A,B,C and d are called Transmission 

parameters. In the matrix form,equationa and bare expressed as , 

[ ]= [ ] 

 

Thematrix is called Transmission Matrix. 

 
Foragivennetwork,theseparameterscanbedeterminedasfollows.Withport2‐2’opencircuited 

i.e. =0;applyingavoltage attheport1‐1’,usingequa,wehave 

 

A = andC =
 

 

hence, = = =0 

 

1/Aiscalledtheopencircuitvoltagegainadimensionlessparameter.And = =  

=0iscalledopencircuittransferimpedance.withport2‐2’shortcircuited,i.e. =0,applying voltage

atport1‐1’from equn. b we have 

 

‐B= and‐D= 



 

‐ = = =0iscalledshortcircuittransferadmittance 

and, 

 

‐ = 

 

 
= 

 

 
=0iscalledshortcircuitcurrentgainadimensionlessparameter. 

 
Problem1.3 

FindthetransmissionorgeneralcircuitparametersforthecircuitshowninFig.1.10 
 

Fig.1.10 
 

 
Solution:FromEquations1.5and1.6,wehave 

 

 

whenb‐b’isopencircuitedi.e. =0,wehave A = 

 

 

where = and = andhence,A= C =

 = 
 

whenb‐b’isshortcircuitedi.e. =0,wehave 
 

B = ‐ andD =‐  

 

Inthecircuit,‐ = andso,B= 



similarly, = and‐ = and 

hence D = 

 

 

Hybridparameters 
 

Hybridparametersorh‐parametersfindextensiveuseintransistorcircuits. Theyarewellsuitedto 

transistor circuits as these parameters can be most conveniently measured. The hybrid matrices 

describeatwo‐portnetwork,when thevoltageofone portand thecurrentof otherportaretaken as the 

independent variables. Consider the network infigure 1.11. 

Ifthevoltageatport1‐1’and currentatport2‐2’are takenasdependentvariables,wecan 

expressthemintermsof and . 
 

………………………………………………. 1.7 

………………………………………………….1.8 

 

Thecoefficientintheabovetermsarecalledhybridparameters.Inmatrixnotation [ ] =

[ ] 

 
 
 
 
 

 
Figure1.11 

fromequationaandbtheindividualhparametersmaybedefinedbyletting and =0. when = 

0,theport2‐2’is short circuited. 

Then = =0=shortcircuitinputimpedance. 

= =0=shortcircuitforwardcurrentgain 

Similarly, by letting port1‐1’ open,  

 
= =0=opencircuitreversevoltagegain 



= =0=opencircuitedoutputadmittance 

 
Since h‐parameters represent dimensionally an impedance, an admittance,a voltage gain and a 

currentgain,theyare calledhybridparameters.Anequivalentcircuitofatwo‐portnetworkinterms of 

hybrid parameters is shown below. 

 

Figure1.12 
 
 
 

 

Problem1.4 

Findtheh‐parametersofthenetworkshowninFig1.13. 
 

Fig.1.13 

Solution: 

Fromequations1.7and1.8,wehave 

= =0; = =0; = ; = =0 

 

Ifportb‐ isshortcircuited, =0andthenetworklooksasshowninFig.1.14(a) 



 

Fig.1.14(a) 
 

 
= =0; 

 
istheequivalentimpedanceasviewedfromporta‐ is2Ω 

so, = 2V 

= =2Ω 

 

= =0when =0;‐ = andhence =‐  
 

Ifporta‐ isopencircuited, =0andthenetworklooksasshowninFig.1.14(b)then 
 

Fig.1.14(b) 

= and = 2; = = 

4 ; = 



= =and = =0= 

 

 
INTERRELATIONSHIPSOFDIFFERENTPARAMETERS 

ExpressionofzparametersintermsofYparametersandvice‐versa 

From equations 1.1,1.2,1.3 & 1.4 , it is easy to derive the relation between the open circuit 

impedanceparametersandtheshortcircuitadmittance parametersbymeansof twomatrix 

equationsof therespectiveparameters. Bysolvingequationaand bfor and ,we get 

= /  ;and = 

where  is the determinant of Z matrix 

= 
 

= ‐ ………………………………………………………………… 1.9 =‐

+ ………………………………………………………………1.10 

comparingequations1.9and1.10withequations1.3and1.4wehave 

 ; =‐
 

 

= ‐ ; =
 

 

Inasimilarmanner,thezparametersmaybeexpressedintermsofthe admittanceparametersby solving 

equations1.3and1.4for and  

= /  ;and =

where  is the determinant of Y matrix 

=  
 

= ‐ …………………………………………………………………1.11 

 

= ‐ + ……………………………………………………………….. 1.12 

comparingequations1.11and1.12withequations1.1and1.2wehave 

/ 

/ 



; =‐ 

 
= ‐ ; = 

 
GeneralCircuitParametersorABCDParametersinTermsofZparametersand 

Y Parameters 

Weknowthat 
 
 

; ;  
 

;  ;  
 

A = ;C =  ; B =‐ ;D= ‐
 

 

Substitutingthecondition =0inequations1.1and1.2weget A = 

=  

Substitutingthecondition =0inequations1.4weget, 
 

 

A = =  

Substitutingthecondition =0inequations1.2weget C = 

=  
 

Substitutingthecondition =0inequation1.3and1.4andsolvingfor gives Where

isthe determinantoftheadmittance matrix 

= =C 

 
Substitutingthecondition =0inequations1.4,weget 

 = ‐  = B 

Substitutingthecondition =0inequation1.1and1.2andsolving for gives  

Where isthedeterminantoftheimpedancematrix 



‐  = =B 

Substitutingthecondition =0inequation1.2weget, 

 = = D 

 
Substitutingthecondition =0inequations1.3and1.4 we get 

=  =D 
 

 

Tand representation 
 

Atwo‐port networkwithanynumberofelementsmaybeconverted intoatwo‐portthree‐ 

element network. Thus, a two‐port network may be represented by an equivalent T‐ 

network,i.e.threeimpedancesareconnectedtogetherintheformofaTasshowninfigure 1.15. 

 

 

 
Figure1.15 

Itispossibletoexpresstheelementsofthe T‐networkintermofZparameters,orABCD parameters 

as explained below. 

Zparametersofthenetwork 

= = 0 =  

 
= =0 =  



= =0 =  

 
= =0 =  

 
Fromtheaboverelations,itisclearthat 

‐ 

‐ 

‐  

ABCDparametersofthenetwork 

A = = 0=
 

 

B= =0 

When2‐ isshortcircuited 

 

= 
 

 

B= +  
 

C = =0 = 
 

 

D= =0 

 
When2‐ isshortcircuited 

 

= D 

=  

Fromtheaboverelationswecanobtain 

= ; = ; =  

 
Problem:1.6 



TheZparametersofaTwo‐portnetworkare , = =5Ω. 

FindtheequivalentTnetworkandABCDParameters. 

Solution : 

TheequivalentTnetworkisshowninFigure 1.16 

where = ‐ =5Ω 

= ‐ =10Ω 

and =5Ω 

 
TheABCDparametersofthenetworkare A 

= +1=2; B =( )+ = 25Ω C = 

=0.02;D = 1 =3 

Inasimilarwayatwo‐portnetworkmayberepresentedbyanequivalent‐network,i.e. 

three impedances or admittances are connected together in the form of as shown in Fig 

1.17. 

 



Fig.1.16 Fig.1.17 

Itispossibletoexpresstheelementsofthe ‐networkintermsofYparametersorABCD parameters 

as explained below. 

Y‐parametersofthenetwork 
 
 

 
= =0 = + 

= =0 =‐  

= =0 = +  

= =0 =‐  

 

Fromtheaboverelations,itisclearthat =

+  

=‐  

= + 

 

 
WritingABCDparametersintermsofYparametersyieldsthefollowingresults. 

A =
 

 

B = =
 

C= = + +  
 

D= =  
 

fromtheaboveresults,weobtain 

= ; = ; = 
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CLASSIFICATIONOFFILTERS 
 

Afilterisareactivenetworkthatfreelypassesthedesiredbandoffrequencieswhilealmost totally 

suppressing all other bands. A filter is constructed from purely reactive elements, for otherwise the 

attenuationwould neverbecomeszero i nthe pass band of thefilter network. 

Filtersdifferfromsimpleresonantcircuit inprovidingasubstantiallyconstanttransmission over 

the band which they accept; this band may lie between any limits depending on the design. 

Ideally, filters should produce no attenuation in the desired band, called the 

transmissionbandorpassband,andshouldprovidetotalorinfiniteattenuationatallother 

frequencies, called attenuation band or stop band. The frequency which separates the 

transmissionbandandtheattenuationbandisdefinedasthecut‐offfrequencyofthewave filters, 

and is designated by fc 

Filter networks are widely used in communication systems to separate various voice 

channels in carrier frequency telephone circuits. Filters also find applications in instrumentation, 

telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of 

frequencies. A filter may, in principle, have any number of pass bands separated by attenuation 

bands.However,theyareclassifiedintofourcommontypes,viz.lowpass,highpass,bandpassand 

bandelimination. 

Decibelandneper 

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the 

naturallogarithmoftheratioofinputvoltage(orcurrent)tothe output voltage(or current),provide 

thatthe network is properly terminated inits characteristicimpedance Z0. 
 

Fig.9.1(a) 

 
From fig. 9.1 (a) the number of nepers, N= log e [V1/V2]or loge [I1/I2]. A neper can also be 

expressed in terms of input power,P1 and the output power P2 as N=1/2 loge P1/P2. A decibel is 

definedastentimesthecommonlogarithmsoftheratiooftheinputpowertotheoutputpower. 

DecibelD=10log10P1/P2 



Thedecibelcanbeexpressedintermsoftheratioofinputvoltage(orcurrent)andtheoutput voltage

 (orcurrent.) 

D=20log10[V1/V2]=20log10[I1/I2] 

*Onedecibelisequalto0.115 N. 

LowPassFilter 

By definition a low pass (LP) filter is one which passes without attenuation all frequencies 

up to the cut‐off frequency fc , and attenuates all other frequencies greater than fc .The 

attenuation characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all 

frequencies from zero up to the cut‐off frequency. The band is called pass band or transmission 

band.Thus,the pass band for the LP filter is the frequencyrange0 to fc.Thefrequencyrange 

overwhichtransmissiondoesnottakeplaceiscalledthestopbandorattenuationband. Thestop 

bandfor a LP filter is the frequency range above fc. 
 

Fig.9.1(b) 

HighPassFilter 

A highpass (HP) filter attenuates all frequencies belowa designatedcut‐off frequency, fc , and 

passesallfrequenciesabovefc. Thusthepassbandof thisfilteristhefrequencyrangeabovefc,and thestop 

bandisthefrequencyrangebelow fc .Theattenuationcharacteristicof aHPfilterisshown in fig.9.1 (b). 

BandPassFilter 



A band pass filter passes frequencies between two designated cut‐off frequencies and 

attenuatesallotherfrequencies.ItisabbreviatedasBPfilter.Asshowninfig.9.1(b),aBPfilterhas 

twocut‐offfrequenciesandwill havethepassband f2 –f1;f1 iscalledthelowercut–offfrequency, while f2is 

called the upper cut‐off frequency. 

BandEliminationfilter 

Abandeliminationfilterpassesallfrequencieslyingoutsideacertainrange,whileitattenuates all 

frequencies between the two designated frequencies. It is also referred as band stop filter. The 

characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies between 

f1andf2will beattenuatedwhilefrequencies below f1andabovef2will be passed. 

FILTERNETWORKS 
 

Ideally a filter should have zero attenuation in the pass band. This condition can only be 

satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters 

aredesignedwithanassumptionthattheelementsof thefiltersarepurelyreactive.Filtersaremade of 

symmetrical T,or π section. Tand π section can be considered as combination of unsymmetrical L 

sections as shown in Fig.9.2. 
 

Fig.9.2 

The ladder structure is one of the commonest forms of filter network. A cascade 

connectionofseveralTandπsections constitutesaladdernetwork.Acommonformoftheladder network 

is shown in Fig.9.3. 

Figure9.3(a)representsaTsectionladdernetwork,whereasFig.9.3(b)representstheπsection ladder 

network. Itcanbe observed that both networks are identical exceptatthe ends. 



 

Fig.9.3 

EQUATIONSOFFILTERNETWORKS 
 

ThestudyofthebehaviorofanyfilterrequiresthecalculationofitspropagationconstantУ, 

attenuationα,phaseshiftβanditscharacteristicimpedanceZ0. 

T‐Network 

ConsiderasymmetricalT‐networkasshowninFig.9.4. 
 

Fig.9.4 

If the image impedances at port 1‐1' and port 2‐2' are equal to each other ,the image 

impedanceisthencalledthecharacteristic,ortheiterativeimpedance,Z0.Thus,ifthenetworkin 

Fig.9.4isterminatedinZ 0 ,itsinputimpedancewill alsobeZ 0 . Thevalueofinputimpedancefor the 

T‐network when itis terminated inZ0 is given by 



 
 

ThecharacteristicimpedanceofasymmetricalT‐sectionis 
 

(9.1) 

Z0T canalsobeexpressedintermsofopencircuitimpedance Z0Candshortcircuitimpedance Z SCof 

the T– network . From Fig. 9.4,the open circuitimpedance Z 0C= Z1/2+ Z 2 and 
 

(9.2) 

PropagationConstantofT‐Network 

BydefinitationthepropagationconstantУofthenetworkinFig.9.5isgivenbyУ=logeI1/I2 



Writingthemeshequationforthe2ndmesh,weget 
 

Fig.9.5 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(9.3) 

ThecharacteristicimpedanceofaT–networkisgivenby 
 
 
 

 
(9.4) 

SquaringEsq.9.3and9.4andsubtractingEq.9.4fromEq.9.3,weget 



 
 

 
Rearrangingtheaboveequation,wehave 

 

Dividingbothsidesby2,wehave 
 

 

(9.5) 

Stillanotherexpressionmayobtainedforthecomplex propagationconstantintermsof 

thehyperbolic tangent rather than hyperbolic cosine. 



 
(9.6) 

DividingEq.9.6byEq.9.5,Weget 
 

 

AlsofromEq.9.2, 
 
 
 
 
 
 
 
 

 
(9.7) 

π–Network 

Considerasymmetricalπ–sectionshowninFig.9.6.WhenthenetworkisterminatedinZ0atport2 

–2‘,itsinputimpedance isgivenby 
 

Fig.9.6 



 
 

(9.8) 
 

FromEq.9.1 
 

(9.9) 



Z0π canbeexpressedintermsoftheopen circuitimpedanceZ0Candshortcircuitimpedance Z SCof 

the πnetwork shown inFig.9.6 exclusive of the load Z 0 . 

FromFig.9.6,theinputimpedanceatport1‐ 1’whenport2– 2’isopenisgiven by 
 

Similarly,theinputimpedanceatport1–1’whenport2–2’isshortcircuitisgivenby 
 

 

ThusfromEq.9.8 
 

(9.10) 

PropagationConstantofπ–Network 

Thepropagationconstantofasymmetricalπ–section isthesameasthatforasymmetricalT– 

Section. 
 

CLASSIFICATIONOFPASSBAND 
AND STOP BAND 

 

Itispossibletoverifythecharacteristicsoffiltersfrom thepropagationconstantofthe network.The 

propagation constant У, being a function of frequency, the pass band, stop band and the cut‐off 

point,i.e.thepointofseparation betweenthe twobands,can beidentified.ForsymmetricalTorπ – 

section, the expression for propagation constant У in terms of the hyperbolic functions is given by 

Eqs9.5 and 9.7in section 9.3. From Eq.9.7, sin h У/2 = √(Z 1/4Z2). 

IfZ1andZ2arebothpureimaginaryvalues,theirratio,andhenceZ1/4Z2,willbeapurereal number. 

Since Z1andZ2may be anywhereinthe rangefrom ‐jαto+jα,Z1/ 4Z2may alsohave any 



realvaluebetweentheinfinitelimits.ThensinhУ/2= √Z 1 /√4Z2 willalsohaveinfinitelimits,but may be 

either real or imaginary depending uponwhether Z1/ 4Z2 is positive or negative. 

We know that the propagationconstant is a complex functionУ = α+jβ ,the real partof the 

complexpropagationconstant α, isameasureofthe changeinmagnitudeofthecurrentor voltage in the 

network ,known as the attenuation constant . β is a measure of the difference in phase 

betweentheinputand outputcurrentsorvoltages.KnownasphaseshiftconstantThereforeαand β take 

ondifferentvalues depending uponthe of Z1/ 4Z2. From Eq.9.7,We have 
 

(9.11) 

CaseA 

IfZ1andZ2arethesametypeofreactances,then[Z1/4Z2]isrealandequal tosayα+x. The 

imaginary partof the Eq. 9.11 mustbe zero. 

 

(9.12) 
 

(9.13) 

αandβmustsatisfyboththeaboveequations. 

Equation9.12canbesatisfiedifβ/2=0ornπ,wheren =0,1,2,…..,thencosβ/2=1andsinhα/2=x 

=√(Z1/4Z2) 
 

 
Thatxshouldbealwayspositiveimpliesthat 

 

(9.14) 



Sinceα≠0,itindicatesthattheattenuationexists. 

CaseB 

Considerthe caseofZ1andZ2 being oppositetypeofreactances,i.e. Z1 /4Z2isnegative, making √Z1/ 

4Z2imaginary and equal tosay Jx 

*TherealpartoftheEq.9.11mustbezero. 
 

(9.15) 
 

(9.16) 

Boththeequationsmustbesatisfiedsimultaneouslybyαandβ. Equation9.15maybesatisfied whenα 

= 0,or when β= π. These conditions are consideredseparately hereunder 

(i) Whenα=0;from Eq.9.15,sinhα/2=0.andfrom Eq.9.16sinβ/2= x=√(Z1 /4Z2).Butthe 

sinecanhaveamaximum valueof1. Therefore,the above solutionisvalidonlyfornegativeZ1/ 4Z2 

,andhavingmaximumvalueofunity.Itindicatestheconditionofpassband withzeroattenuation and 

follows the condition as 

 
 
 

 
(9.17) 

(ii) Whenβ=π,fromEq.9.15,cosβ/2=0.AndfromEq.9.16,sinβ/2=±1;coshα/2=x=√(Z1/4Z2) 

. 

Sincecoshα/2≥ 1,thissolutionisvalidfornegativeZ1/4Z2 ,andhavingmagnitude greater 

than,or equal tounity. Itindicates the condition of stop band since α≠ 0. 

 
 
 

 
(9.18) 

Itcanbe observedthat there are three limits for case A andB. Knowing the values of Z1 

and Z2 , it is possible to determine the case to be applied to the filter. Z1 and Z2 are made of different 

types of reactances, or combinations of reactances, so that, as the frequency changes, a 

filtermaypassfromonecasetoanother.CaseAand(ii)incaseBareattenuationbands,whereas(i) in case B 

is the transmission band. 



Thefrequencywhichseparatestheattenuationbandfrompassbandorviceversais 

called cut‐off frequency. The cut‐off frequency is denoted by fC , and is also termed as nominal 

frequency.SinceZ0 isrealinthepassbandandimaginaryinanattenuation band,fCisthefrequency atwhich 

Z0changes from being real tobeing imaginary. These frequencies occur at 

 
9.18(a) 

 

 
9.18(b) 

Theaboveconditionscanberepresentedgraphically,asinFig.9.7. 
 

Fig.9.7 

CHARACTERISTIC IMPEDANCEIN 
THE PASS AND STOP BANDS 

 

ReferringtothecharacteristicimpedanceofasymmetricalT‐network,fromEq.9.1Wehave 
 

IfZ1andZ2arepurelyreactive,letZ1=jx1andZ2=jx2,then 



 

(9.19) 

Apassbandexistswhenx1andx2areofoppositereactancesand 
 

Substituting these conditions in Eq. 9.19, we find that ZOT is positive and real. Now consider 

thestop band.Astopbandexistswhenx1 andx2 areofthesametypeofreactances; thenx1/4x2 >0. 

Substituting these conditions in Eq. 9.19, we find that ZOT is purley imaginary in this attenuation 

region.Anotherstopbandexists whenx1andx2areof the same typeofreactances,butwithx1/4x2 

<‐1.ThenfromEq.9.19,ZOTisagainpurlyimaginaryintheattenuationregion. 

 
Thus, in a pass band if a network is terminated in a pure resistance RO(ZOT = RO), the input 

impedanceisROandthenetworktransmitsthepower receivedfromthesourcetotheROwithout any 

attenuation. In a stop band ZOT is reactive. Therefore, if the network is terminated in a pure 

reactance ( ZO = pure reactance), the input impedance is reactive, and cannot receive or transmit 

power. However, the network transmits voltage and current with 900 phase difference and with 

attenuation. It has already been shown that the characteristics impedance of a symmet rical π‐ 

sectioncan be expressed in terms of T. Thus, from Eq.9.9,Z0π= Z1Z2/Z0T. 

SinceZ1 andZ2arepurelyreactive,Z0π isreal,ifZOT isrealandZ0xisimaginaryifZOT is imaginary. 

Thusthe conditions developedfor T– sectionare validfor π – sections. 

CONSTANT–KLOWPASSFILTER 
 

Anetwork,eitherTor π,issaidtobe oftheconstant– ktypeifZ1 andZ2 ofthenetworksatisfythe relation 

Z1Z2= k2 

(9.20) 

Where Z1 and Z2 are impedances in the T and π sections as shown in Fig.9.8.Equation 9.20 states 

that Z1 and Z2 are inverse if their product is a constant, independent of frequency. K is a real 

constant thatistheresistance.kisoftentermedasdesignimpedanceornominalimpedanceofthe 

constant k – filter. 



Theconstantk,Torπtypefilterisalsoknownasthe prototypebecauseothermorecomplex network canbe 

derived from it. A prototype Tand π–section are shown in 
 

Fig.9.8 

Fig.9.8(a)and(b),where Z1=jωL andZ2= 1/jωC. HenceZ1Z2 =L /C=k2whichis independent of 
frequency. 

 

(9.21) 

SincetheproductZ1andZ2isconstant,thefilterisaconstant–ktype.FromEq.9.18(a)the 

cut‐offfrequenciesareZ1/4Z2= 0, 
 

(9.22) 

The pass band can be determined graphically. The reactances of Z1 and 4Z2 will vary with 

frequencyasdrawninFig.9.9.Thecut‐offfrequencyat theintersectionof thecurvesZ1 and‐4z2 is indicated 

as fC . On the X – axis as Z1 = ‐4Z2 at cut‐off frequency, the pass band lies between the frequencies 

atwhich Z1= 0,and Z1= ‐ 4Z2. 



 

Fig.9.9 

AllthefrequenciesabovefClieinastoporattenuationband,thus,thenetworkiscalleda low‐ 

passfilter.WealsohavefromEq.9.7that 
 

FromEq.9.22 
 

Theplotsofαand βforpassandstopbandsareshowninFig.9.10 



Thus,fromFig.9.10,α=0,β=2sinh‐1(f/fC)forf<fC 

α=2cosh‐1(f/fC);β =πforf>fC 

 

Fig.9.10 

Thecharacteristicsimpedancecanbe calculatedasfollows 
 

(9.23) 

From Eq.9.23, ZOT is rael when f<fC , i.e.in the pass band at f = fC , ZOT ; and for f >fC , ZOT is 

imaginaryintheattenuationband ,risingtoinfinitereactanceatinfinitefrequency.Thevariationof ZOTwith 

frequency is shown in Fig.9.11 
 



Fig.9.11 

Similarly,thecharacteristicsimpedanceofaπ–networkisgivenby 
 

(9.24) 

The variation of ZOπ with frequency is shown in Fig.9.11 . For f <fC , ZOπ is real ; at f = fC , ZOT is 

infinite,andforf>fC,ZOπ isimaginary.Alowpassfiltercanbedesignedfromthespecificationsof cut‐off 

frequency and load resistance. 

Atcut‐offfrequency,Z1=‐4Z2 

 

 

Example9.1. 

Designalowpassfilter(bothπandT–sections)havingacut‐offfrequencyof2kHz 

to operate with a terminated load resistance of 500 Ω . 

solution.Itisgiventhatk=√(L/C)=500Ω,andfC=2000Hz we 

know that L = k/πfC= 500/3.14 x 2000 = 79.6 mH 

C=1/πfCk=1/3.14.2000.500=0.318μF 



TheTandπ–sectionsofthisfilterareshowninFig.9.12(a)and(b)respectively. 

Fig.9.12 

CONSTANTK–HIGHPASSFILTER 
 

ConstantK – high pass filter can be obtained by changing the positions of series and shunt arms of 

thenetworksshowninFig.9.8.TheprototypehighpassfiltersareshowninFig.9.13,whereZ1=‐j/ωCandZ2= 

jωL . 
 

Fig.9.13 

Again,itcanbeobservedthattheproductofZ1 andZ2isindependentoffrequency, andthe filter 

designobtained will be of the constantk type .Thus,Z1Z2are given by 
 

Thecut‐offfrequenciesaregivenbyZ1=0andZ2=‐4Z2. 

Z1=0indicatesj/ωC =0,orω→α 



FromZ1=‐4Z2 

‐j/ωC=‐4jωL 

ω2LC = 1/4 

 
(9.25) 

 

 
ThereactancesofZ1andZ2aresketchedasfunctionsoffrequencyasshowninFig.9.14. 

 

Fig.9.14 

AsseenfromFig.9.14,thefiltertransmitsallfrequenciesbetweenf=fCandf=α.ThepointfC 

fromthegraphisapointatwhichZ1=‐4Z2 . From 

Eq.9.7, 

 

FromEq.9.25, 



 
 

Inthepassband,‐1<Z1/4Z2<0,α=0ortheregioninwhichfC/f<1isapassbandβ=2sin‐1(fC/f 

) 

IntheattenuationbandZ1/4Z2<‐1,i.e.fC/f>1 

α=2cosh‐1[Z1/4Z2] 

=2cos‐1(fC/f);β=‐π 
 

Fig.9.15 

Theplotsofαandβforpassandstop bandsofahighpassfilternetworkareshowninFig.9.15. 

Ahighpassfiltermaybedesignedsimilartothelowpassfilterbychoosing aresistiveload requalto 

the constant k ,such that R = k = √L/C 



 

Thecharacteristicimpedancecanbecalculatedusingtherelation 
 

 

 

 
Similarly,thecharacteristicimpedanceofaπ–networkisgivenby 

 

(9.26) 

Fig.9.16 

TheplotofcharacteristicimpedanceswithrespecttofrequencyisshowninFig.9.16. 

Example9.2. 



Designahighpassfilterhavingacut‐offfrequencyof1kHzwithaloadresistance 

of600Ω. 

Solution. Itisgiven thatRL =K=600ΩandfC =1000Hz L= K 

/4πfc= 600/4 x πx 1000 = 47.74 mH 

C=1/4πkfC=1/4πx600x1000=0.133μF 

TheTandπ–sectionsof thefilterareshowninFig.9.17. 
 

Fig.9.17 

m–DERIVED T–SECTIONFILTER 
 

ItisclearfromFigs.9.10and9.15thattheattenuation isnotsharpinthestopbandfor k‐typefilters. The 

characteristic impedance, Z0 is a function of frequency and varies widely in the transmission band. 

Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or 

more identical sections. In order to join the filter sections, it would be necessary that their 

characteristic impedances be equal to each other at all frequencies. If their characteristic 

impedances match at all frequencies, they would also have the same pass band . However , 

cascading is nota proper solution from apractical pointof view . 

This is because practical elements have a certain resistance, which gives rise to 

attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by 

cascading also results in an increase of ‘α’ in the pass band .If the constant k section is regarded as 

the prototype, it is possible to design a filter to have rapid attenuation in the stop band , and the 

samecharacteristicimpedanceastheprototypeatallfrequencies.Suchafilteriscalledm–derived 

filter.SupposeaprototypeT– networkshowninFig.9.18(a)hastheseriesarmmodifiedasshownin Fig.9.18 

(b) , where m is a constant . Equating the characteristic impedance of the networks in Fig.9.18, we 

have 



 

Fig.9.18 

ZOT=ZOT 
, 

WhereZOT,isthecharacteristicimpedanceofthemodified(m–derived)T–network. 
 

 

(9.27) 

ItappearsthattheshuntarmZ‘
2consistsoftwoimpedancesinseriesasshowninFig.9.19. 

 

Fig.9.19 



FromEq.9.27, 1–m2/4mshouldbepositivetorealizetheimpedanceZ‘
2physically, 

i.e.0<m<1.Thusm –derivedsectioncanbeobtainedfromtheprototypebymodifyingitsseriesand shunt 

arms .The same technique can be applied to π section network. Suppose a prototype π – network 

shown in Fig. 9.20(a) has the shunt arm modified as shown in Fig. 9.20(b). 
 

 

 

Fig.9.20 
 

Z0π=Z‘
0π 

 

WhereZ‘
0πisthecharacteristicimpedanceofthemodified(m–derived)π–network. 

 



Squaringandcrossmultiplyingtheaboveequationresultsasunder. 
 

(9.28) 

Itappearsthattheseriesarmofthem – derivedπsectionisaparallelcombinationof mZ1 and 4mZ2 

/1– m2 . The derived m section is shown inFig.9.21. 

m–Derived LowPassFilter 

InFig.9.22,both m– derivedlowpassTand πfiltersectionsareshown.For the T –sectionshownin 

Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency fα above cut‐off 

frequency fC. 

Iftheshuntarmisseriesresonant,its impedancewillbeminimumorzero.Therefore,the 

outputiszeroandwillcorrespondtoinfiniteattenuationatthisparticularfrequency.Thus,atfα 

1/mωrC=1–m2/4mωrL,whereωristheresonantfrequency 



 

Fig.9.21 
 

Fig.9.22 
 

Sincethecut‐offfrequencyforthelowpassfilterisfc=1/π√LC 
 

(9.29) 
 

(9.30) 



If a sharp cut‐off is desired,fα should be near to fc . From Eq.9.29,it is clear that for the 

smaller the value of m,fα comes close to fc .Equation 9.30 shows that if fc and fα are specified , the 

necessary value of m may then be calculated. Similarly, for m – derived π section, the inductance 

andcapacitance intheseriesarmconstitutearesonantcircuit. Thus,at fαafrequency corresponds to 

infinite attenuation, i.e. at fα 

 

(9.31) 

Thusforboth m–derivedlowpassnetworksforapositivevalueofm(0<m<1),fα>fc. 

Equations 9.30 or 9.31 can be used to choose the value of m,knowingfc and fr . After the value of m 

is evaluated, the elements of the T or π – networks can be found from Fig.9.22. The variation of 

attenuationfor alowpassm– derivedsectioncanbe verifiedfromα=2cosh‐1√Z1/4Z2forfc<f<fα. For Z1= 

jωLandZ2= ‐j/ωCfor the prototype. 
 

 

Figure9.23showsthevariationofα ,βandZ0 withrespectto frequencyfor anm –derived low pass 

filter. 



 
Fig.9.23 

Example9.3 

Designam–derivedlowpassfilterhavingcut‐offfrequencyof1kHz, design 

impedanceof400Ω,andtheresonantfrequency1100Hz. 

Solution. k=400Ω,fC=1000Hz;fα=1100Hz From 

Eq.9.30 

 

LetusdesignthevaluesofL andCfora lowpass,K –typefilter(prototypefilter). Thus, 

 

Theelementsofm–derivedlowpasssectionscanbe obtainedwithreferencetoFig.9.22. Thus 

the T‐section elements are 



 
 

Them–derivedLPfiltersectionsareshowninFig.9.24. 
 

Fig.9.24 

m–DerivedHighPassFilter 

InFig.9.25bothm–derivedhighpassTandπ–sectionareshown. 

If the shunt arm in T – section is series resonant, it offers minimum or zero 

impedance.Therefore,theoutputiszeroand,thus,atresonancefrequencyorthefrequency 

corresponds to infinite attenuation. 



 
 

Fig.9.25 
 

FromEq.9.25,thecut–offfrequencyfCofahighpassprototypefilterisgivenby 
 

(9.32) 
 

(9.33) 

Similarly,forthem–derivedπ–section ,theresonant circuitisconstitutedbythe series arm 

inductance and capacitance . Thus , at fα 



 
 

Fig.9.26 

Thusthefrequencycorrespondingtoinfiniteattenuationisthesameforbothsections. 

Equation 9.33 may be used to determine m for a given fα and fC . The elements of the m – 

derivedhighpassTor π–sectionscan befoundfrom Fig.9.25.Thevariationofα,β andZ0 with frequency is 

shown in Fig. 9.26. 
 

Fig.9.26 



Example9.4. 

Designam‐derivedhighpassfilterwithacut‐offfrequencyof10kHz; design 

impedanceof5Ωandm= 0.4. 

Solution.Fortheprototypehighpassfilter, 
 

Theelementsofm‐derivedhighpasssectionscanbe obtainedwithreferencetoFig.9.25.Thus, 

theT‐sectionelementsare 
 

Tandπsectionsofthem–derivedhighpassfilterareshowninFig.9.27. 
 



BANDPASSFILTER 

Fig.9.27 

 
 

 

AsalreadyexplainedinSection9.1,abandpassfilterisonewhichattenuatesallfrequenciesbelow a lower 

cut‐off frequency f1 and above an upper cut‐off frequency f2.Frequencieslyingbetween f1 and f2 

comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may 

beobtainedbyusingalowpassfilterfollowedbyahighpassfilterinwhichthecut‐offfrequency of theLP 

filterisabovethecut‐offfrequency ofthe HP filter, theoverlapthusallowing onlyabandof frequencies 

to pass . This is not economical in practice; it is more economical to combine the low and high pass 

functions into a single filter section . 

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant 

frequency,i.e.theresonantfrequencyoftheseriesarmandtheresonantfrequencyof theshunt arm 

are made equal to obtain the band pass characteristic. 
 

Fig.9.28 

Forthisconditionofequalresonantfrequencies. 
 

(9.34) 



 
(9.35) 

 

(9.36) 
 

FromEq.9.36 
 

Wherekisconstant.Thus,thefilterisaconstantk– type.Therefore,fora constantk– typeinthe pass band. 
 



i.e.thevalueofZ1atlowercut‐offfrequencyisequaltothenegativeofthevalueofZ1attheupper 

cut‐offfrequency . 
 

(9.37) 

FromEq.9.34,L1C1=1/ω0
2 

HenceEq.9.37maybewrittenas 
 

(9.38) 
 



Fig.9.29 

Thus,theresonantfrequencyisthegeometricmeanofthecut‐offfrequencies.The variation 

of the reactances with respect to frequency is shown inFig.9.29. 

IfthefilteristerminatedinaloadresistanceR=K,thenatthelowercut‐offfrequency. 
 

 

(9.39) 
 

(9.40) 



 

(9.41) 
 

(9.42) 

Equations9.39through9.42arethedesignequations ofaprototypebandpassfilter.The variation of 

α, β with respect to frequency is shown in Fig.9.30. 
 

Fig.9.30 

Example9.5. 

Designk–typebandpassfilterhavingadesignimpedanceof500Ωandcut‐off 

frequencies1kHzand10kHz. 

Solution. 

k=500Ω;f1=1000Hz;f2=10000Hz 

FromEq.9.40, 
 

FromEq.9.39, 
 



FromEq.9.41, 
 

FromEq.9.42, 
 

Eachofthetwoseriesarmsoftheconstantk,T–sectionfilterisgivenby 
 

BANDELIMINATIONFILTER 
 

Abandeliminationfilterisonewhichpasseswithoutattenuationallfrequencieslessthanthelower 

cut‐offfrequency f1 ,andgreaterthan theuppercut‐offfrequency f2 . Frequencieslying between f1and 

f2are attenuated. Itis also known as band stop filter. Therefore, a bandstop filter can be 

realized by connecting a low pass filter in parallel with a high pass section, in which the cut‐off 

frequencyoflowpassfilterisbelowthatofa highpassfilter.The configurationsofTand πconstant k band 

stop sections are shown in Fig.9.31. The band elimination filter is designed in the same manner as is 

the band pass filter. 



 
 
 
 
 
 
 
 
 

 
Fig.9.31 

Asforthebandpassfilter,theseriesandshuntarmsarechosento resonateatthesame 

frequencyω0. Therefore,fromFig.9.31(a),fortheconditionofequalresonantfrequencies 
 

(9.43) 
 

(9.44) 
 

(9.45) 
 

(9.46) 
 

(9.47) 

Atcut‐off frequencies,Z1=‐ 4Z2 

MultiplyingbothsideswithZ2,weget 



 

(9.48) 

Iftheloadisterminatedinaloadresistance,R=k,thenatlowercut‐offfrequency 
 

FromEq.9.44, 
 

 

(9.49) 

FromEq.9.44, 
 

(9.50) 



AlsofromEq.9.46, 
 

(9.51) 
 

(9.52) 
 

 

Fig.9.32 

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49 

throughEq.9.52isthedesignequationsofaprototype bandeliminationfilter.Thevariationofα,β with 

respect to frequency is shown in Fig.9.33 . 



 

Fig.9.33 

Example9.6. 

Designabandeliminationfilterhavingadesignimpedanceof600Ωandcut‐off 

frequenciesf1=2kHzandf2=6kHz. 

Solution.(f2–f1)=4kHz 
 

 
MakinguseoftheEqs.9.49through9.52inSection9.10,wehave 
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