| Discipline :- | Semester:- | Name of the Teaching Faculty: - | |--------------------------|---------------------|--| | ETC | 5 th | Aditi Mohapatra | | Subject:- | No of Days/per | Semester From:- 01.07.2024 To:- 08.11.2024 | | Analog & Digital | Week Class Allotted | <u>01.07.2024</u> 10 <u>08.11.2024</u> | | Communication | :- | | | (Th. 3) | | * | | - | 05 | | | Week - | Class Day | Theory | | 1 st | 1 st | Elements of Communication Systems. | | | 2 nd | Communication Process- Concept of Elements of Communication System & its Block diagram | | | 3 rd | Source of information & Communication Channels. | | | 4 th | Classification of Communication systems (Line & Wireless or Radio) | | | 5 th | Modulation Process, Need of modulation | | | 1 st | classify modulation process | | | 2 nd | Analog and Digital Signals & its conversion | | 2 nd | 3 rd | Analog and Digital Signals & its conversion | | 2 | 4 th | D-1: | | | 5 th | Basic concept of Signals & Signals classification (Analog and Digital) | | | | Bandwidth limitation | | 3 rd | 1 st | Amplitude (linear) Modulation System | | | 2 nd | Amplitude modulation & derive the expression for amplitude modulation signal | | | 3 rd | derive the expression for power relation in AM wave | | | 4 th | derive the expression for Modulation Index and simple problems | | | 5 th | Generation of Amplitude Modulation(AM)- Linear level AM modulation only | | | 1 st | Demodulation of AM waves (liner diode detector) | | 4 th | 2 nd | Demodulation of AM waves (square law detector & PLL) | | | 3 rd | Explain SSB signal and DSBSC signal | | | 4 th | | | | 5 th | Methods of generating & detection SSB-SC signal (Indirect method only) | | | 1 st | Methods of generation DSB-SC signal (Ring Modulator) | | | 2 nd | Detection of DSB-SC signal (Synchronous detection) | | 5 th | 3 rd | | | J | 4 th | Concept of Balanced modulators | | | 5 th | Vestigial Side Band Modulation | | | 1 st | Angle Modulation Systems. | | | 2 nd | Concept of Angle modulation & its types (PM & FM) | | 6 th | 3 rd | Basic principle of Frequency Modulation & Frequency Spectrum of FM | | | , | Signal. | | | 4 th | Expression for Frequency Modulated Signal & Modulation Index and | | | 5 th | sideband of FM signal | | 7 th - | 1 st | Explain Phase modulation & difference of FM & PM)- working principle with Block Diagram | | | 2 nd | Compare between AM and FM modulation (Advantages & Disadvantage | | | 3 rd | Methods of FM Generation (Indirect (Armstrong) method only) working principle with Block Diagram | | | 4 th | Methods of FM Demodulator or detector (Forster-Seely & Ratio detector | | | 5 th | working principle with Block Diagram | | | 1 st | Classification of Radio Receivers | | 8 th | 2 nd | Define the terms Selectivity | | | 3 rd | Fidelity and Noise Figure | | | 4 th | AM transmitter - working principle with Block Diagram | | | 5 th | Concept of Frequency conversion, RF amplifier & IF amplifier , Tuning, S/N rat | | 4 | 1 st | Working of super heterodyne radio receiver with Block diagram | | | 2 nd | Howard or and | | | <u> </u> | | | 9 th | 3 rd | Working of FM Transmitter & Receiver with Block Diagram. | |------------------|-----------------|--| | | 4 th | Concept of Sampling Theorem | | | 5 th | , Nyquist rate & Aliasing | | | 1 st | Sampling Techniques (Instantaneous, Natural, Flat Top) | | 10 th | 2 nd | Analog Pulse Modulation - Generation and detection of PAM | | | 3 rd | PWM & PPM system with the help of Block diagram & comparison of all above. | | | 4 th | | | | 5 th | Concept of Quantization of signal & Quantization error. | | 11 th | 1 st | Generation & Demodulation of PCM system with Block diagram & its applications. | | | 2 nd | | | | 3 rd | Companding in PCM & Vocoder | | | 4 th | Time Division Multiplexing & explain the operation with circuit diagram. | | | 5 th | | | 12 th | | Generation & demodulation of Delta modulation with Block diagram. | | | 2 nd | | | | 3 rd | | | | 4 th | Generation & demodulation of DPCM with Block diagram. | | | 5 th | Comparison between PCM, DM, ADM & DPCM | | 13 th | 1 st | Comparison between 1 cm, DM, 125.4 cc 22 22 | | | 2 nd | Concept of Multiplexing (FDM & TDM) | | | 3 rd | (Basic concept , Transmitter & Receiver) & Digital modulation formats | | | 4 th | | | | 5 th | Advantages of digital communication system over Analog system | | 14 th | | Digital modulation techniques & types | | | 2 nd | Generation and Detection of binary ASK, FSK, PSK, QPSK, QAM, MSK, GMSK. | | | 3 rd | | | | 4 th | | | | 5th | Working of T1-Carrier system. | | | 1st | Spread Spectrum & its applications | | | 2nd | Working operation of Spread Spectrum Modulation Techniques (DS-SS & F SS). | | 15 th | 3rd | Define bit, Baud, symbol & channel capacity formula.(Shannon Theorems | | | 4th | Application of Different Modulation Schemes | | | | | Teaching Faculty HOD LETC