DISCIPLINE:	SEMESTER: 3rd	NAME OF THE TEACHING FACULTY: Satyajit Pradhan
SUBJECT : ENGG. MATH-	NO. OF DAYS/PER WEEK CLASS ALLOTTED:04	SEMESTER FROM DATE : 01/07/2024 TO DATE : 16/12/2024 NO. OF WEEKS : 15
WEEK:15	CLASS DAY:	THEORY TOPIC:
	1 ST	Real and Imaginary numbers, Complex Numbers.
1 ^{sτ} (Complex Numbers)	2 ND	Conjugate complex numbers, Modulus and Amplitude of a complex number.
	3 RD	Geometrical representation of complex number, Properties of Complex Numbers.
	4 TH	Determination of three cube roots of unity and their properties.
2 nd (Complex Numbers) + (Matrices)	1ST	De Moiré's theorem.
	2nd	Solved problems.
	3rd	Basic concepts of matrices and Operation
	4th	Sub matrix and Minors and Rank of a matrix.
3 RD (Matrices)+ (Numerical Methods)	1st	Elementary transformation and Row Reduction Echelon Matrix.
	2nd	System of Linear Equations and their consistency and solutions.
	3rd	Introduction and Rounding off; Synthetic division of polynomials, Different types of Equations and their solution.
	4th	Method of Bisection for solving equations.
4 TH (Numerical Methods) + (Differential Equations)	1st	Solving equation by Newton Rap son Method.
	2nd	Formula deduced from Newton- Rap son .method and solving Numericals based on their formulas.
	3rd	Introduction; order and degree and solution of 1 st order,1 st degree Equation .Exact Equations and their solutions.
	4th	Linear Equations and their solution. Rules for finding complementary function. Solving various numerical to get complementary function.

WEEK:	CLASS DAY:	THEORY TOPIC:
1 1 1 6	1 st	Rules for getting particular integer of the type of function e^{ax+b} and Numericals based on it.
5 [™] (Differential	2 ND	Rules for getting P.I of the hyperbolic function $sin(ax + b)$ or $cos(ax + b)$ and solving numerical based on it.
Equation)	3 RD	Rules for getting P.I if the function is x ^m ; m>0 and solving numerical based on it.
	4 TH	Rules for finding P.I if the function is $e^{ax}V$, where V is the function of x(1 st shifting theorem).

1 1