GOVERNENT POLYTECHNIC DHENKANAL. ## LESSON PLAN: THEORY OF MACHINES ## 4TH SEMESTER (2024- 2025) | Discipline:
Mechanical
Engineering | Semester: 4 | Name of the Teaching Faculty: PRADEEP KUMAR JEN/ Semester From Date: 04/02/2025 To Date: 17/05/2025 No of weeks: 14 | | |--|---|--|--| | Subject:
TOM | No. of Days
per week class
allotted: 04 | | | | Week | Class day | Theory / Provide Life | | | 1 ST | 1 ST | Theory / Practical Topics SIMPLEMECHANISM: | | | | 2 ND | Link, Kinematic chain, mechanism, machine | | | | 3 RD | Inversion, four bar link mechanism and its inversion | | | | 4 TH | Lower pair and higher pair | | | 2 ND | 1 ST | Lower pair and higher pair Cam and followers | | | | 2 ND | Cam and followers Cam and followers | | | | 3 RD | FRICTION: | | | | 4 TH | Friction between nut and screw for square thread, screw jack Bearing and its classification ,Description of roller, needle rolle & ball bearings | | | | 1 ST | Bearinganditsclassification, Description of roller, needleroller & ball bearings | | | 3 RD | 2 ND | Torque transmission in flat pivot & conical pivot bearings. | | | | 3 RD | Torque transmission in flat pivot & conical pivot bearings. | | | | 4 TH | Flat collar bearing of single and multiple types | | | 4 TH | 1 ST | Torque transmission for single and multiple clutches | | | | 2 ND | Working of simple frictional brakes. | | | | 3 RD | Working of simple frictional brakes. | | | | 4 TH | Working of Absorption type of dynamometer | | | 5 TH | 1 ST | POWERTRANSMISSION: Concept of power transmission | | | | 2 ND | Type of drives, belt, gear and chain drive. | | | | 3RD | Computation of velocity ratio, length of belts (open and cross) with and without slip. | | | | | Ratio of belt tensions, centrifugal tension and initial tension | | | | 1 ST | Power transmitted by the belt. | | |------------------|--------------------------|--|--| | 6 TH | 2 ND | Determine belt thickness and width for given permissible stres
for open and crossed belt considering centrifugal tension. | | | 0 | Determine belt thickness | Determine belt thickness and width for given permissible stres
for open and crossed belt considering centrifugal tension. | | | | 4 TH | V-belts and V-belts pulleys | | | | 1 ST | Concept of crowning of pulleys. | | | | 2 ND | Gear drives and its terminology. | | | 7 TH | 3 RD | Gear trains, working principle of simple, compound, reverted and epicyclic gear trains. | | | | 4 TH | GOVERNORS AND FLYWHEEL: Function of governor | | | 8 TH | 1 ST | Classification of governor | | | | 2 ND | Working of Watt, Porter, Proel and Hartnell governors. | | | 8 | 3 RD | Working of Watt, Porter, Proel and Hartnell governors. | | | | 4 TH | Conceptual explanation of sensitivity, stability and isochronisms. | | | | 1 ST | Conceptual explanation of sensitivity, stability and isochronisms. | | | | 2 ND | Function of flywheel. | | | 9 TH | 3 RD | Function of flywheel. | | | | 4 TH | Comparison between flywheel & governor. | | | | 1 ST | Fluctuation of energy and coefficient of fluctuation of speed. | | | 10 TH | 2 ND | BALANCING OF MACHINE: Concept of static and dynamic balancing | | | | 3 RD | Concept of static and dynamic balancing | | | | 4 TH | Static balancing of rotating parts. | | | | 1 ST | Principles of balancing of reciprocating parts. | | | 11 TH | 2 ND | Causes and effect of unbalance. | | | | 3 RD | Difference between static and dynamic balancing | | | | 4 TH | Difference between static and dynamic balancing | | | | 1 ST | Discussion and Revision | | | 12 TH | 2 ND | VIBRATION OF MACHINE PARTS:
Introduction to Vibration and related terms (Amplitude,time period and frequency,cycle) | | | | 3 RD | Introduction to Vibration and related terms (Amplitude,time period and frequency,cycle) | | | | 4 TH | Classification of vibration. | | | 13 TH | 187 | Classification of vibration. | |------------------|-----------------|---| | | 2 ND | Basic concept of natural, forced & damped vibration | | | 3 RD | Basic concept of natural, forced & damped vibration | | | 4 TH | Torsional and Longitudinal vibration. | | 14 TH | 1 ST | Causes & remedies of vibration. | | | 2 ND | Causes & remedies of vibration. | | | 3 RD | Revision | | | 4 TH | Revision | Signature of Faculty Concerned Signature of H.O.D