TH3 GOVT. POLYTECHNIC, DHENKANAL ## LESSON PLAN: ENGG.MATERIAL, 3RD - SEMESTER, (2024-2025) | Discipline:
Mechanical
Engineering | Semester: 3 RD | Name of the teaching faculty:
PRADEEP KUMAR JENA | |--|---|---| | Subject:
EM | No of
days/per
week class
allotted: 04 | | | Week: | Class day: | Theory/practical topics: | | 1 ST | 1 ST | CH-1 (Engineering materials and their properties) Classificatio of ferrous material | | | 2 ND | Classificatio of non ferrous material and alloys | | | 3 RD | Properties of material : Physical and chemical | | | 4 TH | Properties of material : Mechanical | | | 1 ST | Performance requirements, material reliability, safety. | | 2 ND | 2 ND | CH-2(Ferrous material and alloys) Characteristics and application of ferrous materials. | | | 3 RD | Classification, composition and application of low carbon steel, medium carbon steel and high carbon steel. | | | 4 TH | Low alloy steel and high alloy steel. | | | 1 ST | Tool steel and stainless steel. | | 3 RD | 2 ND | Effect of various alloying elements such as Cr,Mn,Ni,V,Mo . | | | 3 RD | Ch-3(Iron carbon system) Concept of phase diagram | | | 4 TH | Concept of cooling curve | | 4 TH | 1 ST | Relation between phase diagram and cooling curve . | | | 2 ND | Drawing of Iron – carbon system with various point. | | | 3 RD | Features of Iron – carbon system | | | 4 TH | Features of Iron – carbon system | |------------------------|------------------------|---| | 5 TH | 1 ST | Micro constituents of Iron. | | | 2 ND | Micro constituents of steel. | | | 3 RD | CH-4(Crystal imperfections) Definition and classification of crystals . | | | 4 TH | Ideal crystal and crystal imperfection | | 6 TH | 1 ST | Classification of imperfaction | | | 2 ND | . Types and causes of point defects | | | 3 RD | Types and causes of point defects | | | 4 TH | Types and causes of line defects | | 7 TH | 1 ST | Types and causes of line defects | | | 2 ND | Effect of imperfection on material properties | | | 3 RD | Deformation by slip and twinning. | | | 4 TH | . Effect of deformation on material properties. | | 8 TH | 1 ST | CH-5(Heat treatment) Purpose of heat treatment | | | 2 ND | Process of heat treatment: Annealing | | | 3 RD | Normalizing | | | 4 TH | Hardening | | 9 TH | 1 ST | Tampering | | | 2 ND | Stress relieving | | | 3 RD | Surface hardening : carburizing | | | 4111 | Nitriding | |------------------|-----------------|--| | 10 TH | 187 | Effect of heat treatment on properties of steel | | | 2 ND | Hardenability of steel . | | | 3 RD | CH-6(Non-ferrous alloys) Aluminium alloys: Composition, property and usage of Duralmin | | | 4 TH | Composition, property and usage of y-alloy | | 11 TH | 1 ST | Copper alloy: Composition, property and usage of Copper-aluminium,copper | | | 2 ND | Composition, property and usage of Babbit and phosperous bronze | | | 3 RD | Composition, property and usage of Brass and Copper-Nickel | | | 4 TH | Predominating elements of lead alloys, Zinc alloys and Nickel alloys | | 12 TH | 1 ST | Low alloy material like p-91,p-22 for power plants and other high temperature services . | | | 2 ND | High alloy materials like stainless steel grades of duplex materials. | | | 3 RD | Super duplex materials . | | | 4 TH | Doubt clearing class | | 13 TH | 1 ST | CH-7(Bearing Material) Classification , Composition, property and uses of Copper base, Tin base bearing material | | | 2 ND | Classification , Composition, property and uses of lead base bearing materia | | | 3 RD | Classification , Composition, property and uses of cadmium base bearing material | | | 4 TH | CH-8(Spring Materials) Introduction to Spring material | | 14 TH | 1 ST | Classification , Composition, property and uses of Iron base spring material | | | 2 ND | Classification , Composition, property and uses of copper base spring material. | | | 3 RD | CH-9(Polymers) Properties and application of thermosetting polymer. | | | 4 TH | Properties and application of thermoplastic polymers. | |-----------------|------------------------|--| | 15 [™] | 187 | Properties of elastomer . | | | 2 ND | CH-(Composites and Ceramics) Classification , Composition, property and uses of particulate based composites . | | | 3 RD | Classification , Composition, property and uses of reinforced composites | | | 4 TH | Classification and uses of ceramics . | Sign. of Faculty Concerned Sign. of HOD