

GOVT. POLYTECHNIC , DHENKANAL,

LESSON PLAN: FLUID MECHANICS, 4TH - SEMESTER, 2024-25

Discipline: Mechanical Engineering	Semester: Summer 2025	Name of the teaching faculty: PRADEEP KUMAR JENA
Subject: FM	No of days/per week class allotted: 04	Semester From Date: 04.02.2025 To Date: 17.05.2025 No of weeks:15
Week:	Class day:	Theory/practical topics:
1 ST	1 st	Unit 1 (Properties of Fluid) Introduction 1.1 Define fluid 1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific volume
	2 ND	Solve simple problems.
	3 RD	Solve simple problems.
	4 TH	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity,
2 ND	1 ST	1.3 surface tension Capillary phenomenon
	2 ND	Solve simple problems.
	3 RD	Solve simple problems
	4 TH	Revision of Unit 1 &Previous semester question discussion
3 RD	1 ST	Unit 2 (Fluid Pressure and its measurements) 2.1 Definitions and units of fluid pressure, pressure intensity and pressure head
		2.2 Statement of Pascal's Law.
	2 ND	2.3 Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure
	3 RD	2.4 Pressure measuring instruments Manometers (Simple and Differential)
	4 TH	2.4 Pressure measuring instruments Manometers (Simple and Differential)
4 TH	1 ST	2.4.1 Bourdon tube pressure gauge

	2 ND	Simple Numerical
	3 RD	Simple Numerical
	4 TH	Rivision of Unit 2 &Previous semester question discussion
5 [™]	1 ST	Unit 3 (Hydrostatics) Introduction 3.1 Definition of hydrostatic pressure 3.2 Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical Bodies)
	2 ND	3.2 Total pressure and centre of pressure on immersedbodies(Horizontal and Vertical Bodies)
	3 RD	3.3 Solve Simple problems.
	4 TH	3.3 Solve Simple problems.
	1 ST	3.4 Archimedes 'principle, concept of buoyancy, meta center and meta centric height (Definition only)
6 TH	2 ND	3.5 Concept of floatation
	3 RD	Solve Simple problems.
	4 TH	Rivision of Unit 3 &Previous semester question discussion
7 TH	1 ST	Unit 4 (Kinematics of Flow) Introduction 4.1 Types of fluid flow
	2 ND	4.2 Continuity equation(Statement and proof for one dimensional flow)
	3 RD	4.3 Bernoulli's theorem(Statement and proof)
	4 TH	4.3 Applications and limitations of Bernoulli's theorem (Venturimeter, pitot tube)
8 TH	1 ST	4.3 Applications and limitations of Bernoulli's theorem (Venturimeter, pitot tube)
	2 ND	4.4 Solve simple problems
	3 RD	4.4 Solve simple problems

	4199	Revision of Unit 4 &Previous semester question discussion
9 TH	187	Unit 5 (Orifices, notches & weirs) Introduction 5.1 Define orifice 5.2 Flow through orifice
	2 ND	5.3 relation between the orifice coefficients
	3 RD	5.4 Classifications of notches & weirs
	4 TH	5.5 Discharge over a rectangular notch or weir
10 TH	1 ST	5.6 Discharge over a triangular notch or weir
	2 ND	5.7 Simple problems on above
	3 RD	5.7 Simple problems on above
	4 TH	Revision of Unit 5 &Previous semester question discussion
	1 ST	Unit 6 (Flow through pipe) Introduction 6.1 Definition of pipe. 6.2 Loss of energy in pipes.
11 TH	2 ND	6.3 Head loss due to friction: Darcy's and Chezy's formula (Expression only
	3 RD	6.4 Solve Problems using Darcy's
	4 TH	6.4 Solve Problems using Chezy's formula
	1 ST	6.4 Solve Problems using Darcy's and Chezy's formula.
12 TH	2 ND	6.5 Hydraulic gradient and total gradient line
	3 RD	6.4 Solve Problems using Darcy's and Chezy's formula.
	4 TH	6.4 Solve Problems using Darcy's and Chezy's formula.
13 TH	1 ST	Rivision of Unit 6 &Previous semester question discussion

	2 ^{NO}	Unit 7 (Impact of jets) Introduction 7.1 Impact of jet on fixed and moving vertical flat plates
	3 RD	7.1 Impact of jet on fixed and moving Curved flat plates
	4 TH	7.1 Impact of jet on fixed and moving Curved flat plates
14 TH	1 ST	7.2 Derivation of work done on series of vanes
	2 ND	7.2 Derivation of condition for maximum efficiency
	3 RD	7.3 Illustration using velocity triangles
	4 TH	7.3 Derivation of work done, efficiency
15 TH	1 ST	Simple problems on above
	2 ND	Simple problems on above
	3 RD	Revision of Unit 7 &Previous semester question discussion
	4 TH	Previous semester question discussion

Sign. of Faculty Concerned

Sign. of HOD