OISCIPLINE : All Branches	SEMESTER: 3rd	NAME OF THE TEACHING FACULTY: Satabdika Nayak
SUBJECT : ENGG. MATH- III	NO. OF DAYS/PER WEEK CLASS ALLOTTED:04	SEMESTER FROM DATE : 01/07/2024 TO DATE : 16/12/2024 NO. OF WEEKS : 15
WEEK:15	CLASS DAY :	THEORY TOPIC:
1 ST (Complex Numbers)	157	Real and Imaginary numbers, Complex Numbers.
	2 ^{NO}	Conjugate complex numbers, Modulus and Amplitude of a complex number.
	380	Geometrical representation of complex number, Properties of Complex Numbers.
	4 TH	Determination of three cube roots of unity and their properties.
2 nd (Complex Numbers) + (Matrices)	1ST	De Moiré's theorem.
	2nd	Solved problems.
	3rd	Basic concepts of matrices and Operation
	4th	Sub matrix and Minors and Rank of a matrix.
	1st	Elementary transformation and Row Reduction Echelon Matrix.
3 RD	2nd	System of Linear Equations and their consistency and solutions.
(Matrices)+ (Numerical Methods)	3rd	Introduction and Rounding off; Synthetic division of polynomials, Different types of Equations and their solution.
	4th	Method of Bisection for solving equations.
4 TH (Numerical Methods) + (Differential Equations)	1st	Solving equation by Newton Rap son Method.
	2nd	Formula deduced from Newton-Rap son .method and solving Numericals based on their formulas .
	3rd	Introduction; order and degree and solution of 1st order,1st degree Equation .Exact Equations and their solutions.
	4th	Linear Equations and their solution. Rules for finding complementary function. Solving various numerical to get complementary function.

WEEK:	CLASS DAY:	THEORY TOPIC:
	1 ⁵⁷	Rules for getting particular integer of the type of function $e^{\alpha x+b}$ and Numericals based on it.
5 [™] (Differential Equation)	2 ND	Rules for getting P.I of the hyperbolic function $sin(ax + b)$ or $cos(ax + b)$ and solving numerical based on it.
	3 RD	Rules for getting P.I if the function is x ^m ; m>0 and solving numerical based on it.
	4 TH	Rules for finding P.1 if the function is $e^{\alpha x}V$, where V is the function of x(1 st shifting theorem).

6 ^T Uifferer	107	
Equation	200	Rules for finding P.I for special cases.
	3rd	Partial differential Equations of 1 st and 2 nd order and their formation
	4th	Solving linear partial differential equations of 1st order by Lagranges method and multipliers
7 th (Finite	1st	Introduction to finite difference and forming Forward and Back Difference table.
Difference Interpolat		Definition of shift operator (E) and Establish relation between E and the difference operator.
	3rd	Interpolation and Extrapolation, Newton's forward Difference Interpolation formula.
	4th	Problems based on Newton's Forward Difference Interpolation formula.
8 th (Finite	. 1st	Newton's Backward Difference Interpolation formula.
Interpolatio		Problems based on Newton's Backward Difference Interpolation formula.
	3rd	Lagrange's Interpolation Formula and numerical based on it.
	4th	Inverse interpolation Formula and problems based on it.
9 th (Finite	1 ⁵¹	Definition of Numerical Integration and Newton's Cote's Formula.
Difference 8 Interpolation	200	Trapezoidal Rule and solving problems based on it.
	3 RD	Simpson's $\frac{1}{3}$ rd Rule and problems based on it.
	4 TH	Comparison of both methods.
	1ST	Gamma function and its properties.
10 th (Laplace Transform)	2nd	Laplace Transformation of a function f(t), Existence of L.T and Linearity properties.
	3rd	L.T of a const; L.T of t^n , n=+ve (integral), n= (fraction), L.T of e^{at} .Problems on it.
	4th	L.T of cos hat, sin hat, L.T of cos at, sin at, Application of it.
11th/1 c = la = -	1st	L.T of Discontinuous functions and problems based on it.
11 th (Laplace Transform)	2nd	First shifting Theorem and Numericals. Second Shifting Theorem and Numericals based on it.
	3rd	Change of scale property and problems based on it. L.T of $e^{at}f(t)$, $t^n f(t)$, $\frac{1}{t}f(t)$, different problems based on it.
	4th	Laplace Transform of the $n\pi$ derivatives, L.T of the integer and
ath/Lastass	1st	Inverse L.T and formula derived from Laplace Transformation.
2 th (Laplace ransform)	2nd	Inverse Laplace Transformation, Partial Fraction Method.

	3rd	$L^{-1}\left[\frac{F(S)}{S}\right], L^{-1}\left\{F^{n}(S)\right\}.$
	4th	Solving Differential Equation in the Method of Laplace Transformation.
13 th (Fourier	157	Periodic function, Even and odd functions, Some useful integrals.
Series)	2 ND	Dirichlet's condition for the Fourier expansion of a function and its convergence.
	3 RD	Periodic function f(x) satisfying Dirichlet's condition on a Fourier series.
	4 TH	Definition of Fourier series and Euler's formula.
	1ST	F.S of simple function x and Deducing formulae from it.
14 th (Fourier Series)	2nd	F.S of $x - x^2$, $x + x^2$, e^x , e^{-x} .
-	3rd	Fourier series of some Trigonometry functions.
	4th	Fourier series of functions we can be deduced from the above trigonometry functions.
TEALER-	1st	Examples of Discontinuous function.
15 th (Fourier	2nd	Fourier Series of Even functions.
Series)	3rd	Fourier series of Odd functions.
	4th	Different Problems based on Fourier series.

Gatabolika Nayak

Signature of faculty

Principal Govt.polytechnic, Dhenkanal