Discipline :-	Semester:-	Name of the Teaching Faculty: -
ELECTRICAL	5 th	Haine of the featuring featuring
Subject:		SMRUTIREKHA MOHANTY
	No of Days/per Week Class Allotted	Semester From: 01.07.2024 To:- 16.12.2024
DIGITAL	Self Class Milotted	
ELECTRONICSE	,	
MICROPROCESSOR	05	
(TH-3) Week		
AAGGK	Class Day	Theory
1 st	1"	Introduction to DIGITAL ELECTRONICS
	2"	NUMBER SYSTEMS AND CODES
	3'6	
	3	List different number system & their relevance; binary, octal, decimal, Hexadecimal, Study the Conversion from one number system to another
	411	Perform Arithmetic operations of binary number systems.
111.4	5 th	1's & 2's complement of Binary numbers.,
		Perform Subtraction of binary numbers using complementary numbers.
		Perform multiplication and division of binary numbers.
1. 4	151	Define concept of Digital Code & its application.
2""		Distinguish between weighted & non-weight Code
	2 nd	Study Codes: definition, relevance
	3'd	Types of code (8-4-2-1, Gray, Excess-3 and importance of parity bit.
	4th	LOGIC GATES
	5 th	Discuss the Basic Logic & representation using electric signals
3' ^d	151	Learn the Basic Logic gates (NOT, OR, AND, NOR, NAND, EX-OR & EXNOR) – Symbol, function, expression, truth table & example IC nos.
	2 nd	Define Universal Gates with examples & realization of other gates
	3 rd	BOOLEAN ALGEBRA
-	4 th	Understafid Boolean: constants, variables & functions.
,	·	Comprehend the Laws of Boolean algebra
	5 th	State and prove Demorgan's Theorems.
		Represent Logic Expression : SOP & POS forms & conversion
	1"	Simplify the Logic Expression/Functions (Maximum of 4 variables): using
4 th	•	Boolean algebra and Karnaugh's map methods
4	2 nd	What is don't care conditions ?Realisation of simplified logic expression using K-Map
	3' ^d	Realisation of simplified logic expression using gates. Illustrate with examples the above.
	4 th	COMBINATIONAL CIRCUITS
	5 th	Define a Combinational Circuit and explain with examples. Arithmetic Circuits (Binary)

•	151	Mr. Com. Com. Com.
5 th	2 nd	Realise function, functional expression, logic circuit, gate level circuit, truth table & applications of Half-adders.
	2	Full-adder & full-Subtractor.
		Explain Serial & Parallel address: concept comparison & application
	3'd	Discuss Multiplexers: definition, relevance, gate level circuit of simple. De-
	4 th	multiplexers (1:4) logic circuit with truth Table Explain the working of Binary-Decimal Encoder & Decoder.
	5 th	Working of 2-bit Magnitude Comparator: logic expression, truth table
- 15	1 st	SEQUENTIAL CIRCUITS
6 th	2 nd	Define Sequential Circuit: Explain with examples.
	3 rd	Know the Clock-definition characteristics, types of triggering & waveform.
	4 th	Define Flip-Flop, Study RS, Clocked RS, D, T, JK, MS-JK flip-flop with
		logic Circuit and truth tables.
	5 th	Concept of Racing and how it can be avoided.
7 th	1 st	Applications of flip-flops & its conversion.
	2 nd	COUNTERS
	3 rd	List the different types of counters-Synchronous and Asynchronous.
	4 th	Explain the modulus of a counter
	5 th	COUNTERS
	1 st	List the different types of counters-Synchronous and Asynchronous.
8^{th}	-	Explain the modulus of a counter 4-bit asynchronous counter with timing diagram
	2 nd	Asynchronous decade counter
	3 rd	4-bit synchronous counter
	4 th	Compare Synchronous and Asynchronous counters and know their ICs nos.
	5 th	REGISTERS
	1 st	Explain the working of various types of shift registers—SISO
9 th	2 nd	SIPO
	3 rd	PISO
	4 th	PIPO, with truth table using flip flop.
4	5 th	8085 MICRO PROCESSOR
	1 st	Introduction to microprocessor, Micro computers
	2 nd	Architecture of intel 8085A Microprocessor
10 th	3 rd	, Functional Block diagram and Description of each block.
	4 th	Pin diagram and description.
	5 th	Stack, Stack Pointer, Stack Top
	1 st	clinterrupts, Op-code & Operands
	2 nd	Grouping and Explanation of different group instructions with examples
11 th	3 rd	Instruction sets &Addressing modes
5	4 th	Instruction fetching and execution, Timing diagram of different machine cycle.
	5 th	Timing diagram of different machine cycle. 8085A timing states.
		- and different machine cycle, 808.74 timing

		s MO Manning
12 th	1 st 2 nd	Basic Interfacing Concept, Memory Mapping & I/O Mapping Programmable peripheral interface Intel -8255, Functional block diagram and Operation of 8255, Programming of 8255 and Operation 9255; Seven Segment LED display
·	3 rd 4 th 5 th	and Operation of 8255, Programming Application Using 8255: Seven Segment LED display Square Wave Generator Traffic light controller
13 th	1 st 2 nd 3 rd 4 th	Doubt Clearing Classes and Revision of Syllabus
14 th	5 th 1 st 2 nd 3 rd	Previous Five (05) Years Semester Question Answer Discussion
	4 th 5 th	11. d 5

Teaching Faculty