

GOVERNMENT POLYTECHNIC, DHENKANAL DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGG. LESSON PLAN SUMMER 2025

Subject:-	No of Days/per	Semester From:- :- <u>04.02.2025</u> To:- <u>17.05.2025</u>
Control	Week Class	
Systems &	Allotted :-	
Component	4	Name of the Faculty: Aishwarya Dash
(Th-2)	9	
Week	Class Day	Theory
1st	1 st	Fundamental of Control System, Classification of Control system
	2 nd	Open loop system & Closed loop system and its comparison
	3 rd	Effects of Feed back
	4 th	Standard test Signals(Step, Ramp, Parabolic, Impulse Functions
2nd	1 st	Servomechanism ,Regulators (Regulating systems)
	2 nd	Transfer Functions
	3 rd	Transfer Function of a system & Impulse response,
	4 th	Properties, Advantages & Disadvantages of Transfer Function
3rd	1 st	Properties, Advantages & Disadvantages of Transfer Function
	2 nd	Poles & Zeroes of transfer Function
	3 rd	Representation of poles & Zero on the s-plane
	4 th	Simple problems of transfer function of network
	1 st	Control system Components & mathematical modelling of physical System
4th	2 nd	Control system Components & mathematical modelling of physical System
	3 rd	Components of Control System
	4 th	Potentiometer, Synchros, Diode modulator & demodulator
5th	1 st	DC motors, AC Servomotors
	2 nd	Modelling of Electrical Systems(R, L, C, Analogous systems)
	3 rd	Block Diagram & Signal Flow Graphs(SFG), Definition of Basic
6 . 1 . 4 .	*h	Elements of a Block Diagram
	4 th	Canonical Form of Closed loop Systems
6th	1 st	Rules for Block diagram Reduction
	2 nd	Procedure for of Reduction of Block Diagram
	3 rd	Simple Problem for equivalent transfer function
	4 th	Basic Definition in SFG & properties, Mason's Gain formula
7th	1 st	Steps for solving Signal flow Graph
	2 nd	Simple problems in Signal flow graph for network
	3 rd	Time Domain Analysis of Control Systems
	4 th	Definition of Time, Stability, steady-state response, accuracy
8th	1 st	transient accuracy, In-sensitivity and robustness.
	2 nd	System Time Response
	3 rd	Aalysis of Steady State Error
	4 th	Types of Input & Steady state Error(Step ,Ramp, Parabolic)
9th	1 st	Parameters of first order system & second-order systems
	2 nd	Derivation of time response Specification (Delay time, Rise time, Peak
		time,Setting time,Peak over shoot)
	3 rd	FeedbackCharacteristics of Control Systems
	4 th	Effect of parameter variation in Open loop System & Closed loop Systems

	1 st	Effect of parameter variation in Open loop System & Closed loop Systems
10th	2 nd	Introduction to Basic control Action& Basic modes of feedback control:
		proportional, integral and derivative
	3 rd	Effect of feedback on overall gain, Stability
	4 th	Realisation of Controllers(P, PI,PD,PID) with OPAMP
11th	1 st	Stability concept& Root locus Method
	2 nd	Effect of location of poles on stability
2201	3 rd	RouthHurwitz stability criterion
	4 th	RouthHurwitz stability criterion
	1 st	Steps for Root locus method
12th	2 nd	Steps for Root locus method
12(1)	3 rd	Root locus method of design(Simple problem)
	4 th	Root locus method of design(Simple problem)
	1 st	Frequency-response analysis&Bode Plot,Frequencyresponse,Relationship
		between time & frequency response
13th	2 nd	Methods of Frequency response
L	3 rd	Polar plots & steps for polar plot
_	4 th	Bodes plot & steps for Bode plots
	1 st	Stability in frequency domain, Gain Margin& Phase margin
14th	2 nd	Nyquist plots. Nyquiststability criterion
, 1401	3 rd	Simple problems as above
	4 th	State variable Analysis
	1 st	Concepts of state, state variable, state model
15th	2 nd	Concepts of state, state variable, state model
13(1)	3 rd	state models for linear continuous time functions(Simple)
	4 th	state models for linear continuous time functions(Simple)

Signature of Faculty

Signature of HOD